Video genre classification using dynamics

The problem addressed here is the classification of videos at the highest level into pre-defined genre. The approach adopted is based on the dynamic content of short sequences (/spl sim/30 secs). This paper presents two methods of extracting motion from a video sequence: foreground object motion and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Roach, M.J., Mason, J.D., Pawlewski, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem addressed here is the classification of videos at the highest level into pre-defined genre. The approach adopted is based on the dynamic content of short sequences (/spl sim/30 secs). This paper presents two methods of extracting motion from a video sequence: foreground object motion and background camera motion. These dynamics are extracted, processed and applied to classify 3 broad classes: sports, cartoons and news. Experimental results for this 3 class problem give error rates of 17%, 8% and 6% for camera motion, object motion and both combined respectively, on /spl sim/30 second sequences.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2001.941230