Signal and Noise Analysis of an Open-Circuit Voltage Pixel for Uncooled Infrared Image Sensors
An imaging pixel unit-cell topology leveraging a photodetector in the forward-bias region is proposed. Connecting the anode of the photodiode to the gate of a NMOS device operating in the subthreshold region provides the basis for a new open-circuit voltage pixel (VocP) architecture. Theoretical ana...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2021-05, Vol.68 (5), p.1827-1840 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An imaging pixel unit-cell topology leveraging a photodetector in the forward-bias region is proposed. Connecting the anode of the photodiode to the gate of a NMOS device operating in the subthreshold region provides the basis for a new open-circuit voltage pixel (VocP) architecture. Theoretical analysis is presented to show the response and performance benefits of the VocP in comparison to a conventional pixel. Based on this analysis, the signal and noise relationships for both pixels are derived and leveraged to construct an end-to-end readout system model. The model results highlight potential performance benefits of the VocP over a conventional direct-injection pixel topology. To verify the analysis, the proposed VocP readout architecture is fabricated along with a conventional direct-injection pixel readout in a 0.18~\mathrm {\mu }\text{m} CMOS technology. The VocP performance is compared to a traditional reverse-bias current-mode photodetector configuration. Simulation, modeling, and measurements align with the proposed analytical model. Benefits in system sensitivity and dynamic range are demonstrated showing more than a 2\times improvement in noise-equivalent temperature difference and a 4 dB improvement in dynamic range. |
---|---|
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2021.3068595 |