Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control

This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2022, Vol.6, p.319-324
1. Verfasser: van Waarde, Henk J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue
container_start_page 319
container_title IEEE control systems letters
container_volume 6
creator van Waarde, Henk J.
description This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online approach requires less data samples and is even shown to be completely sample efficient.
doi_str_mv 10.1109/LCSYS.2021.3073860
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_9406124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9406124</ieee_id><sourcerecordid>10_1109_LCSYS_2021_3073860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-c620bb0e71e6c7139b54905ff5972d26ad24f0a46f029a7ad1fbc6b7b78d50f33</originalsourceid><addsrcrecordid>eNpNkN1KAzEQhYMoWGpfQG_yAlsnP5t0vdNtq0KlQvVCvFiyu5MSqdmSBLFv79YW8WqGOXMOh4-QSwZjxqC4XpSrt9WYA2djAVpMFJyQAZc6z5jM1em__ZyMYvwAADbhGngxIO93uOt8S58xRBcT-kRn341LJrnO39Cl3ziP_WmLwX3u1SlGt_bUdoFOTTLZNLgv9PSpa7F_XVPTh5WdT6HbXJAzazYRR8c5JK_z2Uv5kC2W94_l7SJrBGMpaxSHugbUDFWjmSjqXBaQW5sXmrdcmZZLC0Yq2zc22rTM1o2qda0nbQ5WiCHhh9wmdDEGtNW2L2vCrmJQ7QlVv4SqPaHqSKg3XR1MDhH_DIUExbgUP4JYYvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control</title><source>IEEE Xplore</source><creator>van Waarde, Henk J.</creator><creatorcontrib>van Waarde, Henk J.</creatorcontrib><description>This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online approach requires less data samples and is even shown to be completely sample efficient.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2021.3073860</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; Data-driven modeling ; Design methodology ; Identification ; Linear systems ; Noise measurement ; Trajectory ; Tuning</subject><ispartof>IEEE control systems letters, 2022, Vol.6, p.319-324</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-c620bb0e71e6c7139b54905ff5972d26ad24f0a46f029a7ad1fbc6b7b78d50f33</citedby><cites>FETCH-LOGICAL-c311t-c620bb0e71e6c7139b54905ff5972d26ad24f0a46f029a7ad1fbc6b7b78d50f33</cites><orcidid>0000-0002-2561-2682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9406124$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9406124$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Waarde, Henk J.</creatorcontrib><title>Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online approach requires less data samples and is even shown to be completely sample efficient.</description><subject>Adaptive systems</subject><subject>Data-driven modeling</subject><subject>Design methodology</subject><subject>Identification</subject><subject>Linear systems</subject><subject>Noise measurement</subject><subject>Trajectory</subject><subject>Tuning</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1KAzEQhYMoWGpfQG_yAlsnP5t0vdNtq0KlQvVCvFiyu5MSqdmSBLFv79YW8WqGOXMOh4-QSwZjxqC4XpSrt9WYA2djAVpMFJyQAZc6z5jM1em__ZyMYvwAADbhGngxIO93uOt8S58xRBcT-kRn341LJrnO39Cl3ziP_WmLwX3u1SlGt_bUdoFOTTLZNLgv9PSpa7F_XVPTh5WdT6HbXJAzazYRR8c5JK_z2Uv5kC2W94_l7SJrBGMpaxSHugbUDFWjmSjqXBaQW5sXmrdcmZZLC0Yq2zc22rTM1o2qda0nbQ5WiCHhh9wmdDEGtNW2L2vCrmJQ7QlVv4SqPaHqSKg3XR1MDhH_DIUExbgUP4JYYvM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>van Waarde, Henk J.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid></search><sort><creationdate>2022</creationdate><title>Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control</title><author>van Waarde, Henk J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-c620bb0e71e6c7139b54905ff5972d26ad24f0a46f029a7ad1fbc6b7b78d50f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive systems</topic><topic>Data-driven modeling</topic><topic>Design methodology</topic><topic>Identification</topic><topic>Linear systems</topic><topic>Noise measurement</topic><topic>Trajectory</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Waarde, Henk J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Waarde, Henk J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2022</date><risdate>2022</risdate><volume>6</volume><spage>319</spage><epage>324</epage><pages>319-324</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online approach requires less data samples and is even shown to be completely sample efficient.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2021.3073860</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2022, Vol.6, p.319-324
issn 2475-1456
2475-1456
language eng
recordid cdi_ieee_primary_9406124
source IEEE Xplore
subjects Adaptive systems
Data-driven modeling
Design methodology
Identification
Linear systems
Noise measurement
Trajectory
Tuning
title Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20Persistent%20Excitation:%20Online%20Experiment%20Design%20for%20Data-Driven%20Modeling%20and%20Control&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=van%20Waarde,%20Henk%20J.&rft.date=2022&rft.volume=6&rft.spage=319&rft.epage=324&rft.pages=319-324&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2021.3073860&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2021_3073860%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9406124&rfr_iscdi=true