Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control
This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2022, Vol.6, p.319-324 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 324 |
---|---|
container_issue | |
container_start_page | 319 |
container_title | IEEE control systems letters |
container_volume | 6 |
creator | van Waarde, Henk J. |
description | This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online approach requires less data samples and is even shown to be completely sample efficient. |
doi_str_mv | 10.1109/LCSYS.2021.3073860 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_9406124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9406124</ieee_id><sourcerecordid>10_1109_LCSYS_2021_3073860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-c620bb0e71e6c7139b54905ff5972d26ad24f0a46f029a7ad1fbc6b7b78d50f33</originalsourceid><addsrcrecordid>eNpNkN1KAzEQhYMoWGpfQG_yAlsnP5t0vdNtq0KlQvVCvFiyu5MSqdmSBLFv79YW8WqGOXMOh4-QSwZjxqC4XpSrt9WYA2djAVpMFJyQAZc6z5jM1em__ZyMYvwAADbhGngxIO93uOt8S58xRBcT-kRn341LJrnO39Cl3ziP_WmLwX3u1SlGt_bUdoFOTTLZNLgv9PSpa7F_XVPTh5WdT6HbXJAzazYRR8c5JK_z2Uv5kC2W94_l7SJrBGMpaxSHugbUDFWjmSjqXBaQW5sXmrdcmZZLC0Yq2zc22rTM1o2qda0nbQ5WiCHhh9wmdDEGtNW2L2vCrmJQ7QlVv4SqPaHqSKg3XR1MDhH_DIUExbgUP4JYYvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control</title><source>IEEE Xplore</source><creator>van Waarde, Henk J.</creator><creatorcontrib>van Waarde, Henk J.</creatorcontrib><description>This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online approach requires less data samples and is even shown to be completely sample efficient.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2021.3073860</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; Data-driven modeling ; Design methodology ; Identification ; Linear systems ; Noise measurement ; Trajectory ; Tuning</subject><ispartof>IEEE control systems letters, 2022, Vol.6, p.319-324</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-c620bb0e71e6c7139b54905ff5972d26ad24f0a46f029a7ad1fbc6b7b78d50f33</citedby><cites>FETCH-LOGICAL-c311t-c620bb0e71e6c7139b54905ff5972d26ad24f0a46f029a7ad1fbc6b7b78d50f33</cites><orcidid>0000-0002-2561-2682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9406124$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9406124$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Waarde, Henk J.</creatorcontrib><title>Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online approach requires less data samples and is even shown to be completely sample efficient.</description><subject>Adaptive systems</subject><subject>Data-driven modeling</subject><subject>Design methodology</subject><subject>Identification</subject><subject>Linear systems</subject><subject>Noise measurement</subject><subject>Trajectory</subject><subject>Tuning</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1KAzEQhYMoWGpfQG_yAlsnP5t0vdNtq0KlQvVCvFiyu5MSqdmSBLFv79YW8WqGOXMOh4-QSwZjxqC4XpSrt9WYA2djAVpMFJyQAZc6z5jM1em__ZyMYvwAADbhGngxIO93uOt8S58xRBcT-kRn341LJrnO39Cl3ziP_WmLwX3u1SlGt_bUdoFOTTLZNLgv9PSpa7F_XVPTh5WdT6HbXJAzazYRR8c5JK_z2Uv5kC2W94_l7SJrBGMpaxSHugbUDFWjmSjqXBaQW5sXmrdcmZZLC0Yq2zc22rTM1o2qda0nbQ5WiCHhh9wmdDEGtNW2L2vCrmJQ7QlVv4SqPaHqSKg3XR1MDhH_DIUExbgUP4JYYvM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>van Waarde, Henk J.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid></search><sort><creationdate>2022</creationdate><title>Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control</title><author>van Waarde, Henk J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-c620bb0e71e6c7139b54905ff5972d26ad24f0a46f029a7ad1fbc6b7b78d50f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive systems</topic><topic>Data-driven modeling</topic><topic>Design methodology</topic><topic>Identification</topic><topic>Linear systems</topic><topic>Noise measurement</topic><topic>Trajectory</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Waarde, Henk J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Waarde, Henk J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2022</date><risdate>2022</risdate><volume>6</volume><spage>319</spage><epage>324</epage><pages>319-324</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online approach requires less data samples and is even shown to be completely sample efficient.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2021.3073860</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1456 |
ispartof | IEEE control systems letters, 2022, Vol.6, p.319-324 |
issn | 2475-1456 2475-1456 |
language | eng |
recordid | cdi_ieee_primary_9406124 |
source | IEEE Xplore |
subjects | Adaptive systems Data-driven modeling Design methodology Identification Linear systems Noise measurement Trajectory Tuning |
title | Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20Persistent%20Excitation:%20Online%20Experiment%20Design%20for%20Data-Driven%20Modeling%20and%20Control&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=van%20Waarde,%20Henk%20J.&rft.date=2022&rft.volume=6&rft.spage=319&rft.epage=324&rft.pages=319-324&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2021.3073860&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2021_3073860%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9406124&rfr_iscdi=true |