Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control
This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2022, Vol.6, p.319-324 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In comparison to the classical persistency of excitation condition, this online approach requires less data samples and is even shown to be completely sample efficient. |
---|---|
ISSN: | 2475-1456 2475-1456 |
DOI: | 10.1109/LCSYS.2021.3073860 |