Digital Non-Linearity Calibration for ADCs With Redundancy Using a New LUT Approach
This paper presents a novel Look-up Table (LUT) calibration technique for static non-linearity compensation in analog-to-digital converters (ADCs) with digital redundancy, such as Successive Approximation Register (SAR), Algorithmic, Sub-ranging or Pipeline ADCs. The method compensates the performan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2021-08, Vol.68 (8), p.3197-3210 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel Look-up Table (LUT) calibration technique for static non-linearity compensation in analog-to-digital converters (ADCs) with digital redundancy, such as Successive Approximation Register (SAR), Algorithmic, Sub-ranging or Pipeline ADCs. The method compensates the performance limitations of the conventional LUT approach in presence of comparison noise and/or non-monotonicity. In these circumstances, the input-output transfer function of a redundant ADC becomes significantly multivalued - that is, different output codes can be achieved for the same input level at different time instants. This behavior is motivated because from sample to sample, in a design with redundancy, the processing signal path is not unique, causing that the error under calibration becomes time-dependent, something which is not contemplated in the conventional calibration model. To deal with this effect, this work proposes a digital low-cost post-processing of the standardized Integral-Non-linearity (INL), which resolves multivalued situations using a direct access to the internal redundant codes. The method improvements are validated by realistic SAR and Pipeline ADC case studies at behavioral level, and by experimental data from an 11-bit 60Msps Pipeline ADC implemented in a 130nm CMOS process. These experimental results show that the proposed calibration achieves an improvement of approximately 1.6 effective bits at full-scale input amplitude. |
---|---|
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2021.3066886 |