Bayesian Experimental Design With Application to Dynamical Vehicle Models

In this article, we propose two novel experimental design techniques for designing maximally informative experiments to estimate the parameters of nonlinear dynamical vehicle models. The two techniques include a batch design and a sequential design technique that seek to maximize the expected Shanno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2021-10, Vol.37 (5), p.1844-1851
Hauptverfasser: Cooper, Matthew, McGree, James, Molloy, Timothy L., Ford, Jason J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we propose two novel experimental design techniques for designing maximally informative experiments to estimate the parameters of nonlinear dynamical vehicle models. The two techniques include a batch design and a sequential design technique that seek to maximize the expected Shannon information gain of the parameter distribution using either an online or offline approach (respectively). We apply and compare the techniques in both simulation and real-world experiments with a wheeled vehicle. In our simulation experiments, both of our proposed designs provide superior Shannon information gains relative to an unoptimized benchmark technique. In our real-world experiments, our sequential design technique achieves superior expected Shannon information gains relative to our batch design technique and the benchmark technique.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2021.3063977