Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach

This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Yun, Sangseok, Kang, Jae-Mo, Ha, Jeongseok, Lee, Sangho, Ryu, Dong-Woo, Kwon, Jihoe, Kim, Il-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Yun, Sangseok
Kang, Jae-Mo
Ha, Jeongseok
Lee, Sangho
Ryu, Dong-Woo
Kwon, Jihoe
Kim, Il-Min
description This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection scheme by adopting deep Q-network-based reinforcement learning. Also, we propose an enhanced joint recurrent neural network (RNN) and convolutional neural network (CNN) approach for ground vibration classification. The performance of the proposed scheme is evaluated using real-world ground vibration data. The experimental results show that the proposed classification scheme outperforms the best existing scheme with CNN by more than 13% in terms of classification accuracy. It is also shown that the proposed energy management scheme can improve the accuracy of the proposed ground vibration monitoring system by 7.6% over the comparable scheme using equal power allocation.
doi_str_mv 10.1109/LGRS.2021.3067974
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9389744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9389744</ieee_id><sourcerecordid>2615513003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-336e111e4991c9847297b34a4407a603b2aae9cd16f6b9075f12797f7ef0f1e53</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPhS8Lkz16RN49ucOoVaYf7AByGk3UU7XFLT7sH_3pSNPd3Bfb533IeQc6ATACqvivniZZLQBCaMZkIKfkBGkKZ5TFMBh0PP0ziV-ccxOem6FaUJz3MxIp-3iG1UoPa2sV_xje5wGc2929hl9N5UXveNs9GTs03vfCCuowU21jhf4xptv09GOgQWZRnPyjKatq13uv4-JUdG_3R4tqtj8nZ_9zp7iIvn-eNsWsQ149DHjGUIAMilhFrmXCRSVIxrzqnQGWVVojXKegmZySpJRWogCS8agYYawJSNyeV2bzj7u8GuVyu38TacVEkWLACjlAUKtlTtXdd5NKr1zVr7PwVUDRLVIFENEtVOYshcbDMNIu55yfIw5Owf3TlsXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615513003</pqid></control><display><type>article</type><title>Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Yun, Sangseok ; Kang, Jae-Mo ; Ha, Jeongseok ; Lee, Sangho ; Ryu, Dong-Woo ; Kwon, Jihoe ; Kim, Il-Min</creator><creatorcontrib>Yun, Sangseok ; Kang, Jae-Mo ; Ha, Jeongseok ; Lee, Sangho ; Ryu, Dong-Woo ; Kwon, Jihoe ; Kim, Il-Min</creatorcontrib><description>This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection scheme by adopting deep Q-network-based reinforcement learning. Also, we propose an enhanced joint recurrent neural network (RNN) and convolutional neural network (CNN) approach for ground vibration classification. The performance of the proposed scheme is evaluated using real-world ground vibration data. The experimental results show that the proposed classification scheme outperforms the best existing scheme with CNN by more than 13% in terms of classification accuracy. It is also shown that the proposed energy management scheme can improve the accuracy of the proposed ground vibration monitoring system by 7.6% over the comparable scheme using equal power allocation.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3067974</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial intelligence ; Artificial intelligence (AI) ; Artificial neural networks ; Classification ; Data collection ; Deep learning ; Energy efficiency ; Energy management ; Ground motion ; ground vibration ; Machine learning ; Monitoring ; Monitoring systems ; Neural networks ; Recurrent neural networks ; Reinforcement ; reinforcement learning ; Sensors ; Servers ; System effectiveness ; Vibration ; Vibration measurement ; Vibration monitoring ; Vibrations ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-336e111e4991c9847297b34a4407a603b2aae9cd16f6b9075f12797f7ef0f1e53</citedby><cites>FETCH-LOGICAL-c341t-336e111e4991c9847297b34a4407a603b2aae9cd16f6b9075f12797f7ef0f1e53</cites><orcidid>0000-0002-6145-3252 ; 0000-0003-1339-8057 ; 0000-0002-4556-9669 ; 0000-0002-8181-5994 ; 0000-0003-1262-151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9389744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9389744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yun, Sangseok</creatorcontrib><creatorcontrib>Kang, Jae-Mo</creatorcontrib><creatorcontrib>Ha, Jeongseok</creatorcontrib><creatorcontrib>Lee, Sangho</creatorcontrib><creatorcontrib>Ryu, Dong-Woo</creatorcontrib><creatorcontrib>Kwon, Jihoe</creatorcontrib><creatorcontrib>Kim, Il-Min</creatorcontrib><title>Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection scheme by adopting deep Q-network-based reinforcement learning. Also, we propose an enhanced joint recurrent neural network (RNN) and convolutional neural network (CNN) approach for ground vibration classification. The performance of the proposed scheme is evaluated using real-world ground vibration data. The experimental results show that the proposed classification scheme outperforms the best existing scheme with CNN by more than 13% in terms of classification accuracy. It is also shown that the proposed energy management scheme can improve the accuracy of the proposed ground vibration monitoring system by 7.6% over the comparable scheme using equal power allocation.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Data collection</subject><subject>Deep learning</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Ground motion</subject><subject>ground vibration</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>Reinforcement</subject><subject>reinforcement learning</subject><subject>Sensors</subject><subject>Servers</subject><subject>System effectiveness</subject><subject>Vibration</subject><subject>Vibration measurement</subject><subject>Vibration monitoring</subject><subject>Vibrations</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKd_gPhS8Lkz16RN49ucOoVaYf7AByGk3UU7XFLT7sH_3pSNPd3Bfb533IeQc6ATACqvivniZZLQBCaMZkIKfkBGkKZ5TFMBh0PP0ziV-ccxOem6FaUJz3MxIp-3iG1UoPa2sV_xje5wGc2929hl9N5UXveNs9GTs03vfCCuowU21jhf4xptv09GOgQWZRnPyjKatq13uv4-JUdG_3R4tqtj8nZ_9zp7iIvn-eNsWsQ149DHjGUIAMilhFrmXCRSVIxrzqnQGWVVojXKegmZySpJRWogCS8agYYawJSNyeV2bzj7u8GuVyu38TacVEkWLACjlAUKtlTtXdd5NKr1zVr7PwVUDRLVIFENEtVOYshcbDMNIu55yfIw5Owf3TlsXg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yun, Sangseok</creator><creator>Kang, Jae-Mo</creator><creator>Ha, Jeongseok</creator><creator>Lee, Sangho</creator><creator>Ryu, Dong-Woo</creator><creator>Kwon, Jihoe</creator><creator>Kim, Il-Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6145-3252</orcidid><orcidid>https://orcid.org/0000-0003-1339-8057</orcidid><orcidid>https://orcid.org/0000-0002-4556-9669</orcidid><orcidid>https://orcid.org/0000-0002-8181-5994</orcidid><orcidid>https://orcid.org/0000-0003-1262-151X</orcidid></search><sort><creationdate>2022</creationdate><title>Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach</title><author>Yun, Sangseok ; Kang, Jae-Mo ; Ha, Jeongseok ; Lee, Sangho ; Ryu, Dong-Woo ; Kwon, Jihoe ; Kim, Il-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-336e111e4991c9847297b34a4407a603b2aae9cd16f6b9075f12797f7ef0f1e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Data collection</topic><topic>Deep learning</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Ground motion</topic><topic>ground vibration</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>Reinforcement</topic><topic>reinforcement learning</topic><topic>Sensors</topic><topic>Servers</topic><topic>System effectiveness</topic><topic>Vibration</topic><topic>Vibration measurement</topic><topic>Vibration monitoring</topic><topic>Vibrations</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Sangseok</creatorcontrib><creatorcontrib>Kang, Jae-Mo</creatorcontrib><creatorcontrib>Ha, Jeongseok</creatorcontrib><creatorcontrib>Lee, Sangho</creatorcontrib><creatorcontrib>Ryu, Dong-Woo</creatorcontrib><creatorcontrib>Kwon, Jihoe</creatorcontrib><creatorcontrib>Kim, Il-Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yun, Sangseok</au><au>Kang, Jae-Mo</au><au>Ha, Jeongseok</au><au>Lee, Sangho</au><au>Ryu, Dong-Woo</au><au>Kwon, Jihoe</au><au>Kim, Il-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection scheme by adopting deep Q-network-based reinforcement learning. Also, we propose an enhanced joint recurrent neural network (RNN) and convolutional neural network (CNN) approach for ground vibration classification. The performance of the proposed scheme is evaluated using real-world ground vibration data. The experimental results show that the proposed classification scheme outperforms the best existing scheme with CNN by more than 13% in terms of classification accuracy. It is also shown that the proposed energy management scheme can improve the accuracy of the proposed ground vibration monitoring system by 7.6% over the comparable scheme using equal power allocation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3067974</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6145-3252</orcidid><orcidid>https://orcid.org/0000-0003-1339-8057</orcidid><orcidid>https://orcid.org/0000-0002-4556-9669</orcidid><orcidid>https://orcid.org/0000-0002-8181-5994</orcidid><orcidid>https://orcid.org/0000-0003-1262-151X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_9389744
source IEEE Electronic Library (IEL)
subjects Accuracy
Artificial intelligence
Artificial intelligence (AI)
Artificial neural networks
Classification
Data collection
Deep learning
Energy efficiency
Energy management
Ground motion
ground vibration
Machine learning
Monitoring
Monitoring systems
Neural networks
Recurrent neural networks
Reinforcement
reinforcement learning
Sensors
Servers
System effectiveness
Vibration
Vibration measurement
Vibration monitoring
Vibrations
Wireless communication
Wireless sensor networks
title Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Ground%20Vibration%20Monitoring:%20Reinforcement%20Learning%20and%20RNN-CNN%20Approach&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Yun,%20Sangseok&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3067974&rft_dat=%3Cproquest_RIE%3E2615513003%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615513003&rft_id=info:pmid/&rft_ieee_id=9389744&rfr_iscdi=true