Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach
This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Yun, Sangseok Kang, Jae-Mo Ha, Jeongseok Lee, Sangho Ryu, Dong-Woo Kwon, Jihoe Kim, Il-Min |
description | This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection scheme by adopting deep Q-network-based reinforcement learning. Also, we propose an enhanced joint recurrent neural network (RNN) and convolutional neural network (CNN) approach for ground vibration classification. The performance of the proposed scheme is evaluated using real-world ground vibration data. The experimental results show that the proposed classification scheme outperforms the best existing scheme with CNN by more than 13% in terms of classification accuracy. It is also shown that the proposed energy management scheme can improve the accuracy of the proposed ground vibration monitoring system by 7.6% over the comparable scheme using equal power allocation. |
doi_str_mv | 10.1109/LGRS.2021.3067974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9389744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9389744</ieee_id><sourcerecordid>2615513003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-336e111e4991c9847297b34a4407a603b2aae9cd16f6b9075f12797f7ef0f1e53</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPhS8Lkz16RN49ucOoVaYf7AByGk3UU7XFLT7sH_3pSNPd3Bfb533IeQc6ATACqvivniZZLQBCaMZkIKfkBGkKZ5TFMBh0PP0ziV-ccxOem6FaUJz3MxIp-3iG1UoPa2sV_xje5wGc2929hl9N5UXveNs9GTs03vfCCuowU21jhf4xptv09GOgQWZRnPyjKatq13uv4-JUdG_3R4tqtj8nZ_9zp7iIvn-eNsWsQ149DHjGUIAMilhFrmXCRSVIxrzqnQGWVVojXKegmZySpJRWogCS8agYYawJSNyeV2bzj7u8GuVyu38TacVEkWLACjlAUKtlTtXdd5NKr1zVr7PwVUDRLVIFENEtVOYshcbDMNIu55yfIw5Owf3TlsXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615513003</pqid></control><display><type>article</type><title>Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Yun, Sangseok ; Kang, Jae-Mo ; Ha, Jeongseok ; Lee, Sangho ; Ryu, Dong-Woo ; Kwon, Jihoe ; Kim, Il-Min</creator><creatorcontrib>Yun, Sangseok ; Kang, Jae-Mo ; Ha, Jeongseok ; Lee, Sangho ; Ryu, Dong-Woo ; Kwon, Jihoe ; Kim, Il-Min</creatorcontrib><description>This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection scheme by adopting deep Q-network-based reinforcement learning. Also, we propose an enhanced joint recurrent neural network (RNN) and convolutional neural network (CNN) approach for ground vibration classification. The performance of the proposed scheme is evaluated using real-world ground vibration data. The experimental results show that the proposed classification scheme outperforms the best existing scheme with CNN by more than 13% in terms of classification accuracy. It is also shown that the proposed energy management scheme can improve the accuracy of the proposed ground vibration monitoring system by 7.6% over the comparable scheme using equal power allocation.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3067974</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial intelligence ; Artificial intelligence (AI) ; Artificial neural networks ; Classification ; Data collection ; Deep learning ; Energy efficiency ; Energy management ; Ground motion ; ground vibration ; Machine learning ; Monitoring ; Monitoring systems ; Neural networks ; Recurrent neural networks ; Reinforcement ; reinforcement learning ; Sensors ; Servers ; System effectiveness ; Vibration ; Vibration measurement ; Vibration monitoring ; Vibrations ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-336e111e4991c9847297b34a4407a603b2aae9cd16f6b9075f12797f7ef0f1e53</citedby><cites>FETCH-LOGICAL-c341t-336e111e4991c9847297b34a4407a603b2aae9cd16f6b9075f12797f7ef0f1e53</cites><orcidid>0000-0002-6145-3252 ; 0000-0003-1339-8057 ; 0000-0002-4556-9669 ; 0000-0002-8181-5994 ; 0000-0003-1262-151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9389744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9389744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yun, Sangseok</creatorcontrib><creatorcontrib>Kang, Jae-Mo</creatorcontrib><creatorcontrib>Ha, Jeongseok</creatorcontrib><creatorcontrib>Lee, Sangho</creatorcontrib><creatorcontrib>Ryu, Dong-Woo</creatorcontrib><creatorcontrib>Kwon, Jihoe</creatorcontrib><creatorcontrib>Kim, Il-Min</creatorcontrib><title>Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection scheme by adopting deep Q-network-based reinforcement learning. Also, we propose an enhanced joint recurrent neural network (RNN) and convolutional neural network (CNN) approach for ground vibration classification. The performance of the proposed scheme is evaluated using real-world ground vibration data. The experimental results show that the proposed classification scheme outperforms the best existing scheme with CNN by more than 13% in terms of classification accuracy. It is also shown that the proposed energy management scheme can improve the accuracy of the proposed ground vibration monitoring system by 7.6% over the comparable scheme using equal power allocation.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Data collection</subject><subject>Deep learning</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Ground motion</subject><subject>ground vibration</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>Reinforcement</subject><subject>reinforcement learning</subject><subject>Sensors</subject><subject>Servers</subject><subject>System effectiveness</subject><subject>Vibration</subject><subject>Vibration measurement</subject><subject>Vibration monitoring</subject><subject>Vibrations</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKd_gPhS8Lkz16RN49ucOoVaYf7AByGk3UU7XFLT7sH_3pSNPd3Bfb533IeQc6ATACqvivniZZLQBCaMZkIKfkBGkKZ5TFMBh0PP0ziV-ccxOem6FaUJz3MxIp-3iG1UoPa2sV_xje5wGc2929hl9N5UXveNs9GTs03vfCCuowU21jhf4xptv09GOgQWZRnPyjKatq13uv4-JUdG_3R4tqtj8nZ_9zp7iIvn-eNsWsQ149DHjGUIAMilhFrmXCRSVIxrzqnQGWVVojXKegmZySpJRWogCS8agYYawJSNyeV2bzj7u8GuVyu38TacVEkWLACjlAUKtlTtXdd5NKr1zVr7PwVUDRLVIFENEtVOYshcbDMNIu55yfIw5Owf3TlsXg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yun, Sangseok</creator><creator>Kang, Jae-Mo</creator><creator>Ha, Jeongseok</creator><creator>Lee, Sangho</creator><creator>Ryu, Dong-Woo</creator><creator>Kwon, Jihoe</creator><creator>Kim, Il-Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6145-3252</orcidid><orcidid>https://orcid.org/0000-0003-1339-8057</orcidid><orcidid>https://orcid.org/0000-0002-4556-9669</orcidid><orcidid>https://orcid.org/0000-0002-8181-5994</orcidid><orcidid>https://orcid.org/0000-0003-1262-151X</orcidid></search><sort><creationdate>2022</creationdate><title>Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach</title><author>Yun, Sangseok ; Kang, Jae-Mo ; Ha, Jeongseok ; Lee, Sangho ; Ryu, Dong-Woo ; Kwon, Jihoe ; Kim, Il-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-336e111e4991c9847297b34a4407a603b2aae9cd16f6b9075f12797f7ef0f1e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Data collection</topic><topic>Deep learning</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Ground motion</topic><topic>ground vibration</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>Reinforcement</topic><topic>reinforcement learning</topic><topic>Sensors</topic><topic>Servers</topic><topic>System effectiveness</topic><topic>Vibration</topic><topic>Vibration measurement</topic><topic>Vibration monitoring</topic><topic>Vibrations</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Sangseok</creatorcontrib><creatorcontrib>Kang, Jae-Mo</creatorcontrib><creatorcontrib>Ha, Jeongseok</creatorcontrib><creatorcontrib>Lee, Sangho</creatorcontrib><creatorcontrib>Ryu, Dong-Woo</creatorcontrib><creatorcontrib>Kwon, Jihoe</creatorcontrib><creatorcontrib>Kim, Il-Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yun, Sangseok</au><au>Kang, Jae-Mo</au><au>Ha, Jeongseok</au><au>Lee, Sangho</au><au>Ryu, Dong-Woo</au><au>Kwon, Jihoe</au><au>Kim, Il-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection scheme by adopting deep Q-network-based reinforcement learning. Also, we propose an enhanced joint recurrent neural network (RNN) and convolutional neural network (CNN) approach for ground vibration classification. The performance of the proposed scheme is evaluated using real-world ground vibration data. The experimental results show that the proposed classification scheme outperforms the best existing scheme with CNN by more than 13% in terms of classification accuracy. It is also shown that the proposed energy management scheme can improve the accuracy of the proposed ground vibration monitoring system by 7.6% over the comparable scheme using equal power allocation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3067974</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6145-3252</orcidid><orcidid>https://orcid.org/0000-0003-1339-8057</orcidid><orcidid>https://orcid.org/0000-0002-4556-9669</orcidid><orcidid>https://orcid.org/0000-0002-8181-5994</orcidid><orcidid>https://orcid.org/0000-0003-1262-151X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_9389744 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Artificial intelligence Artificial intelligence (AI) Artificial neural networks Classification Data collection Deep learning Energy efficiency Energy management Ground motion ground vibration Machine learning Monitoring Monitoring systems Neural networks Recurrent neural networks Reinforcement reinforcement learning Sensors Servers System effectiveness Vibration Vibration measurement Vibration monitoring Vibrations Wireless communication Wireless sensor networks |
title | Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Ground%20Vibration%20Monitoring:%20Reinforcement%20Learning%20and%20RNN-CNN%20Approach&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Yun,%20Sangseok&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3067974&rft_dat=%3Cproquest_RIE%3E2615513003%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615513003&rft_id=info:pmid/&rft_ieee_id=9389744&rfr_iscdi=true |