Deep Learning-Based Ground Vibration Monitoring: Reinforcement Learning and RNN-CNN Approach

This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Yun, Sangseok, Kang, Jae-Mo, Ha, Jeongseok, Lee, Sangho, Ryu, Dong-Woo, Kwon, Jihoe, Kim, Il-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter studies deep learning-based efficient ground vibration monitoring systems. In this work, artificial intelligence (AI) techniques are adopted to effectively deal with practical issues of data collection and classification. Specifically, we develop a novel energy-efficient data collection scheme by adopting deep Q-network-based reinforcement learning. Also, we propose an enhanced joint recurrent neural network (RNN) and convolutional neural network (CNN) approach for ground vibration classification. The performance of the proposed scheme is evaluated using real-world ground vibration data. The experimental results show that the proposed classification scheme outperforms the best existing scheme with CNN by more than 13% in terms of classification accuracy. It is also shown that the proposed energy management scheme can improve the accuracy of the proposed ground vibration monitoring system by 7.6% over the comparable scheme using equal power allocation.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2021.3067974