Explicit Constructions of Two-Dimensional Reed-Solomon Codes in High Insertion and Deletion Noise Regime

Insertion and deletion (insdel for short) errors are synchronization errors in communication systems caused by the loss of positional information in the message. Reed-Solomon codes have gained a lot of interest due to its encoding simplicity, well structuredness and list-decoding capability in the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2021-05, Vol.67 (5), p.2808-2820
Hauptverfasser: Duc, Tai Do, Liu, Shu, Tjuawinata, Ivan, Xing, Chaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Insertion and deletion (insdel for short) errors are synchronization errors in communication systems caused by the loss of positional information in the message. Reed-Solomon codes have gained a lot of interest due to its encoding simplicity, well structuredness and list-decoding capability in the classical setting. This interest also translates to the insdel metric setting, as the Guruswami-Sudan decoding algorithm can be utilized to provide a deletion correcting algorithm in the insdel metric. Nevertheless, there have been few studies on the insdel error-correcting capability of Reed-Solomon codes. Our main contributions in this article are explicit constructions of two families of 2-dimensional Reed-Solomon codes with insdel error-correcting capabilities asymptotically reaching those provided by the Singleton bound. The first construction gives a family of Reed-Solomon codes with insdel error-correcting capability asymptotic to its length. The second construction provides a family of Reed-Solomon codes with an exact insdel error-correcting capability up to its length. Both our constructions improve the previously known construction of 2-dimensional Reed-Solomon codes whose insdel error-correcting capability is only logarithmic on the code length.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2021.3065618