Task Duplication-Based Scheduling Algorithm for Budget-Constrained Workflows in Cloud Computing

Workflow scheduling is crucial to the efficient operation of cloud platforms, and has attracted a lot of attention. Up to now, many algorithms have been reported to schedule workflows with budget constraints, so as to optimize workflows' makespan on cloud resources. Nevertheless, the hourly-bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.37262-37272
Hauptverfasser: Yao, Fuguang, Pu, Changjiu, Zhang, Zongyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Workflow scheduling is crucial to the efficient operation of cloud platforms, and has attracted a lot of attention. Up to now, many algorithms have been reported to schedule workflows with budget constraints, so as to optimize workflows' makespan on cloud resources. Nevertheless, the hourly-based billing model in cloud computing is an ongoing challenge for workflow scheduling that easily results in higher makespan or even infeasible solutions. Besides, due to data constraints among workflow tasks, there must be a lot of idle slots in cloud resources. Few works adequately exploit these idle slots to duplicate tasks' predecessors to shorten their completion time, thereby minimizing workflow's makespan while ensuring its budget constraint. Motivated by these, we propose a task duplication based scheduling algorithm, namely TDSA, to optimize makespan for budget-constrained workflows in cloud platforms. In TDSA, two novel mechanisms are devised: 1) a dynamic sub-budget allocation mechanism, it is responsible for recovering unused budget of scheduled workflow tasks and redistributing remaining budget, which is conducive to using more expensive/powerful cloud resources to accelerate completion time of unscheduled tasks; and 2) a duplication-based task scheduling mechanism, which strives to exploit idle slots on resources to selectively duplicate tasks' predecessors, such advancing these tasks' completion time while trying to ensuring their sub-budget constraints. At last, we carry out four groups of experiments, three groups on randomly generated workflows and another one on actual workflows, to compare the proposed TDSA with four baseline algorithms. Experimental results confirm that the TDSA has an overwhelming superiority in advancing the workflows' makespan (up to 17.4%) and improving the utilization of cloud computing resources (up to 31.6%).
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3063456