Service-Based Resilience via Shared Protection in Mission-Critical Embedded Networks

Mission-critical networks, which for example can be found in autonomous cars and avionics, are complex systems with a multitude of interconnected embedded nodes and various service demands. Their resilience against failures and attacks is a crucial property and has to be already considered in their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2021-09, Vol.18 (3), p.2687-2701
Hauptverfasser: Ergenc, Doganalp, Rak, Jacek, Fischer, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mission-critical networks, which for example can be found in autonomous cars and avionics, are complex systems with a multitude of interconnected embedded nodes and various service demands. Their resilience against failures and attacks is a crucial property and has to be already considered in their design phase. In this paper, we introduce a novel approach for optimal joint service allocation and routing, leveraging virtualized embedded devices and shared backup capacity for the fault-tolerant design of mission-critical networks. This approach operates in phases utilizing multiple optimization models. Furthermore, we propose a new heuristic that ensures resource efficiency and fault-tolerance against single node and link failures as pre-requisite for resilience. Our experiments for different application scenarios indicate that our heuristic achieves results close to the optimum and provides 50% of capacity gain compared to a dedicated capacity protection scheme. Moreover, our heuristic ensures fault-tolerance against at least 90% of all potential single node failures.
ISSN:1932-4537
1932-4537
DOI:10.1109/TNSM.2021.3062461