Service-Based Resilience via Shared Protection in Mission-Critical Embedded Networks
Mission-critical networks, which for example can be found in autonomous cars and avionics, are complex systems with a multitude of interconnected embedded nodes and various service demands. Their resilience against failures and attacks is a crucial property and has to be already considered in their...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2021-09, Vol.18 (3), p.2687-2701 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mission-critical networks, which for example can be found in autonomous cars and avionics, are complex systems with a multitude of interconnected embedded nodes and various service demands. Their resilience against failures and attacks is a crucial property and has to be already considered in their design phase. In this paper, we introduce a novel approach for optimal joint service allocation and routing, leveraging virtualized embedded devices and shared backup capacity for the fault-tolerant design of mission-critical networks. This approach operates in phases utilizing multiple optimization models. Furthermore, we propose a new heuristic that ensures resource efficiency and fault-tolerance against single node and link failures as pre-requisite for resilience. Our experiments for different application scenarios indicate that our heuristic achieves results close to the optimum and provides 50% of capacity gain compared to a dedicated capacity protection scheme. Moreover, our heuristic ensures fault-tolerance against at least 90% of all potential single node failures. |
---|---|
ISSN: | 1932-4537 1932-4537 |
DOI: | 10.1109/TNSM.2021.3062461 |