Improved Human-Object Interaction Detection Through On-the-Fly Stacked Generalization

Human-object interaction (HOI) detection, which finds the relationships between humans and objects, is an important research area, but current HOI detection performance is unsatisfactory. One of the main problems is that CNN-based HOI detection algorithms fail to predict correct outputs for unseen t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.34251-34263
Hauptverfasser: Lee, Geonu, Yun, Kimin, Cho, Jungchan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human-object interaction (HOI) detection, which finds the relationships between humans and objects, is an important research area, but current HOI detection performance is unsatisfactory. One of the main problems is that CNN-based HOI detection algorithms fail to predict correct outputs for unseen test data based on a limited number of available training examples. Herein, we propose a novel framework for HOI detection called the on-the-fly stacked generalization deep neural network (OSGNet). OSGNet consists of three main components: (1) feature extraction modules, (2) HOI relationship detection networks, and (3) a meta-learner for combining the outputs of sub-models. Here, components (1) and (2) are considered to be sub-models. Any task-based feature extraction modules, such as classification or human pose estimation modules, can be used as sub-models. To achieve on-the-fly stacked generalization, the sub-models and meta-learner are trained simultaneously. The sub-models are trained to provide complementary information, and the meta-learner improves the generalization performance for unseen test data. Extensive experiments demonstrate that the proposed method achieves state-of-the-art accuracy, particularly in cases involving rare classes.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3061208