A Robust Traffic Control Model Considering Uncertainties in Turning Ratios

The effects of model parameter uncertainty on traffic flow control problems have recently drawn research attention. While the uncertainty in fundamental diagram related parameters has been investigated in the past, few articles have focused on network parameters uncertainty, including turning ratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-07, Vol.23 (7), p.6539-6555
Hauptverfasser: Liu, Hao, Claudel, Christian G., Machemehl, Randy, Perrine, Kenneth A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of model parameter uncertainty on traffic flow control problems have recently drawn research attention. While the uncertainty in fundamental diagram related parameters has been investigated in the past, few articles have focused on network parameters uncertainty, including turning ratio uncertainty. To fill this gap, this article proposes a robust control model to deal with the uncertainties in the turning ratio by using distributionally robust chance constraints. The model allows one to compute the optimal control action that maximizes some objective, under all possible distributions of network parameters. We then apply this robust control framework to both a freeway network and an urban network, and evaluate the impact of uncertainty on optimal control inputs, over the test networks. The case studies show that compared to non-robust control, the proposed robust model can reduce congestion brought by the uncertainties and improve the overall throughput.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2021.3058315