A stratified model to predict dispersion in trabecular bone
Frequency-dependent phase velocity (dispersion) has previously been measured in trabecular bone by several groups. In contrast to most biologic tissues, phase velocity in trabecular bone tends to decrease with frequency. A stratified model, consisting of alternating layers of bone and marrow (in viv...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2001-07, Vol.48 (4), p.1079-1083 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Frequency-dependent phase velocity (dispersion) has previously been measured in trabecular bone by several groups. In contrast to most biologic tissues, phase velocity in trabecular bone tends to decrease with frequency. A stratified model, consisting of alternating layers of bone and marrow (in vivo) or water (in vitro), has been employed in an attempt to explain this phenomenon. Frequency-dependent phase velocity was measured from 300 to 700 kHz in: 1) phantoms consisting of regularly spaced thin parallel layers of polystyrene sheets in water; and 2) 30 calcaneus samples in vitro. For the polystyrene phantoms, the agreement between theory and experiment was good. For the calcaneus samples, the model has some limited usefulness (uncertainty of about 5%) in predicting average phase velocity. More importantly, the model seems to perform consistently well for predicting the frequency dependence of phase velocity in calcaneus. |
---|---|
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/58.935726 |