Metrology-Based Design of a Wearable Augmented Reality System for Monitoring Patient's Vitals in Real Time
In this work, an augmented-reality (AR) system for monitoring patient's vitals in real time during surgical procedures is proposed and metrologically characterized in terms of transmission error rates and latency. These specifications, in fact, are crucial to ensure real-time response which is...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-05, Vol.21 (9), p.11176-11183 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, an augmented-reality (AR) system for monitoring patient's vitals in real time during surgical procedures is proposed and metrologically characterized in terms of transmission error rates and latency. These specifications, in fact, are crucial to ensure real-time response which is a critical requirement for Health applications. The proposed system automatically acquires the vitals from the operating room instrumentation, and shows them in real time directly on a set of wearable AR glasses. In this way, the surgical team has a real-time visualization of a comprehensive set of patient's information, without constantly looking at the instrumentation. The system was designed to ensure modularity, flexibility, ease of use and, most importantly, a reliable communication. The system was designed, implemented and validated experimentally through on-field tests carried out at the Academic Hospital of Federico II University, using instrumentation typically available in the operating room: namely, a respiratory ventilator and a patient monitor. Results of the experimental validation highlight the need for the metrological approach in conceiving advanced monitoring surgical procedures in operating room. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2021.3059636 |