Excellent Pattern Recognition Accuracy of Neural Networks Using Hybrid Synapses and Complementary Training

To overcome the performance degradation in hardware neural networks (NNs) with non-ideal synapse devices, we proposed a novel neuromorphic architecture with both TiO x -based interfacial RRAM and CBRAM-based filamentary RRAM for highly accurate NN training and long-term inference reliability. We use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2021-04, Vol.42 (4), p.609-612
Hauptverfasser: Kwak, Myonghoon, Choi, Wooseok, Heo, Seongjae, Lee, Chuljun, Nikam, Revannath, Kim, Seyoung, Hwang, Hyunsang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 612
container_issue 4
container_start_page 609
container_title IEEE electron device letters
container_volume 42
creator Kwak, Myonghoon
Choi, Wooseok
Heo, Seongjae
Lee, Chuljun
Nikam, Revannath
Kim, Seyoung
Hwang, Hyunsang
description To overcome the performance degradation in hardware neural networks (NNs) with non-ideal synapse devices, we proposed a novel neuromorphic architecture with both TiO x -based interfacial RRAM and CBRAM-based filamentary RRAM for highly accurate NN training and long-term inference reliability. We used a threshold-triggered training scheme, in which interfacial and filamentary RRAMs were programmed in a complementary fashion. This took advantage of the long retention time of the filamentary RRAM and the high-resolution, symmetric weight update in the interfacial RRAM. Additional evaluation of device parameters, such as linearity, precision, variation, and retention time, was conducted. An excellent pattern recognition accuracy of ~97% was achieved during training with the MNIST dataset. Thus, reliable inference accuracy after training was maintained using the filamentary RRAM.
doi_str_mv 10.1109/LED.2021.3058221
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9350640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9350640</ieee_id><sourcerecordid>2505613466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c48472e1f9b94320e719999377164ff39880682b968cb0a1ae1bfb8023cb558f3</originalsourceid><addsrcrecordid>eNo9kM9PwjAUxxujiYjeTbw08Tx8r-227kgQxYSoUTgvXWnJcHTYjuj-e0sgvsv3Hb7f9-NDyC3CCBGKh_n0ccSA4YhDKhnDMzLANJUJpBk_JwPIBSYcIbskVyFsAFCIXAzIZvqrTdMY19F31XXGO_phdLt2dVe3jo613nule9pa-mpi20Tpflr_Fegy1G5NZ33l6xX97J3aBROocis6abe7xmzjUOV7uvCqdtF6TS6saoK5OemQLJ-mi8ksmb89v0zG80SzArtECylyZtAWVSE4A5NjEYvnOWbCWl5ICZlkVZFJXYFCZbCylQTGdRUftnxI7o9zd7793pvQlZt2711cWbI04kAusiy64OjSvg3BG1vufL2N95YI5YFoGYmWB6LliWiM3B0jtTHm317wFDIB_A8adnHK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505613466</pqid></control><display><type>article</type><title>Excellent Pattern Recognition Accuracy of Neural Networks Using Hybrid Synapses and Complementary Training</title><source>IEEE Electronic Library (IEL)</source><creator>Kwak, Myonghoon ; Choi, Wooseok ; Heo, Seongjae ; Lee, Chuljun ; Nikam, Revannath ; Kim, Seyoung ; Hwang, Hyunsang</creator><creatorcontrib>Kwak, Myonghoon ; Choi, Wooseok ; Heo, Seongjae ; Lee, Chuljun ; Nikam, Revannath ; Kim, Seyoung ; Hwang, Hyunsang</creatorcontrib><description>To overcome the performance degradation in hardware neural networks (NNs) with non-ideal synapse devices, we proposed a novel neuromorphic architecture with both TiO x -based interfacial RRAM and CBRAM-based filamentary RRAM for highly accurate NN training and long-term inference reliability. We used a threshold-triggered training scheme, in which interfacial and filamentary RRAMs were programmed in a complementary fashion. This took advantage of the long retention time of the filamentary RRAM and the high-resolution, symmetric weight update in the interfacial RRAM. Additional evaluation of device parameters, such as linearity, precision, variation, and retention time, was conducted. An excellent pattern recognition accuracy of ~97% was achieved during training with the MNIST dataset. Thus, reliable inference accuracy after training was maintained using the filamentary RRAM.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2021.3058221</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Crossbar array ; Hardware ; Inference ; Linearity ; Neural networks ; Object recognition ; Pattern recognition ; Performance degradation ; Performance evaluation ; synapse device ; Synapses ; Titanium oxides ; Training</subject><ispartof>IEEE electron device letters, 2021-04, Vol.42 (4), p.609-612</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c48472e1f9b94320e719999377164ff39880682b968cb0a1ae1bfb8023cb558f3</citedby><cites>FETCH-LOGICAL-c291t-c48472e1f9b94320e719999377164ff39880682b968cb0a1ae1bfb8023cb558f3</cites><orcidid>0000-0003-1930-1914 ; 0000-0003-4064-4575 ; 0000-0002-7190-6980 ; 0000-0002-0786-0885 ; 0000-0002-0408-1165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9350640$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9350640$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kwak, Myonghoon</creatorcontrib><creatorcontrib>Choi, Wooseok</creatorcontrib><creatorcontrib>Heo, Seongjae</creatorcontrib><creatorcontrib>Lee, Chuljun</creatorcontrib><creatorcontrib>Nikam, Revannath</creatorcontrib><creatorcontrib>Kim, Seyoung</creatorcontrib><creatorcontrib>Hwang, Hyunsang</creatorcontrib><title>Excellent Pattern Recognition Accuracy of Neural Networks Using Hybrid Synapses and Complementary Training</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>To overcome the performance degradation in hardware neural networks (NNs) with non-ideal synapse devices, we proposed a novel neuromorphic architecture with both TiO x -based interfacial RRAM and CBRAM-based filamentary RRAM for highly accurate NN training and long-term inference reliability. We used a threshold-triggered training scheme, in which interfacial and filamentary RRAMs were programmed in a complementary fashion. This took advantage of the long retention time of the filamentary RRAM and the high-resolution, symmetric weight update in the interfacial RRAM. Additional evaluation of device parameters, such as linearity, precision, variation, and retention time, was conducted. An excellent pattern recognition accuracy of ~97% was achieved during training with the MNIST dataset. Thus, reliable inference accuracy after training was maintained using the filamentary RRAM.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Crossbar array</subject><subject>Hardware</subject><subject>Inference</subject><subject>Linearity</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Performance degradation</subject><subject>Performance evaluation</subject><subject>synapse device</subject><subject>Synapses</subject><subject>Titanium oxides</subject><subject>Training</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9PwjAUxxujiYjeTbw08Tx8r-227kgQxYSoUTgvXWnJcHTYjuj-e0sgvsv3Hb7f9-NDyC3CCBGKh_n0ccSA4YhDKhnDMzLANJUJpBk_JwPIBSYcIbskVyFsAFCIXAzIZvqrTdMY19F31XXGO_phdLt2dVe3jo613nule9pa-mpi20Tpflr_Fegy1G5NZ33l6xX97J3aBROocis6abe7xmzjUOV7uvCqdtF6TS6saoK5OemQLJ-mi8ksmb89v0zG80SzArtECylyZtAWVSE4A5NjEYvnOWbCWl5ICZlkVZFJXYFCZbCylQTGdRUftnxI7o9zd7793pvQlZt2711cWbI04kAusiy64OjSvg3BG1vufL2N95YI5YFoGYmWB6LliWiM3B0jtTHm317wFDIB_A8adnHK</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Kwak, Myonghoon</creator><creator>Choi, Wooseok</creator><creator>Heo, Seongjae</creator><creator>Lee, Chuljun</creator><creator>Nikam, Revannath</creator><creator>Kim, Seyoung</creator><creator>Hwang, Hyunsang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1930-1914</orcidid><orcidid>https://orcid.org/0000-0003-4064-4575</orcidid><orcidid>https://orcid.org/0000-0002-7190-6980</orcidid><orcidid>https://orcid.org/0000-0002-0786-0885</orcidid><orcidid>https://orcid.org/0000-0002-0408-1165</orcidid></search><sort><creationdate>20210401</creationdate><title>Excellent Pattern Recognition Accuracy of Neural Networks Using Hybrid Synapses and Complementary Training</title><author>Kwak, Myonghoon ; Choi, Wooseok ; Heo, Seongjae ; Lee, Chuljun ; Nikam, Revannath ; Kim, Seyoung ; Hwang, Hyunsang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c48472e1f9b94320e719999377164ff39880682b968cb0a1ae1bfb8023cb558f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Crossbar array</topic><topic>Hardware</topic><topic>Inference</topic><topic>Linearity</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Performance degradation</topic><topic>Performance evaluation</topic><topic>synapse device</topic><topic>Synapses</topic><topic>Titanium oxides</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwak, Myonghoon</creatorcontrib><creatorcontrib>Choi, Wooseok</creatorcontrib><creatorcontrib>Heo, Seongjae</creatorcontrib><creatorcontrib>Lee, Chuljun</creatorcontrib><creatorcontrib>Nikam, Revannath</creatorcontrib><creatorcontrib>Kim, Seyoung</creatorcontrib><creatorcontrib>Hwang, Hyunsang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kwak, Myonghoon</au><au>Choi, Wooseok</au><au>Heo, Seongjae</au><au>Lee, Chuljun</au><au>Nikam, Revannath</au><au>Kim, Seyoung</au><au>Hwang, Hyunsang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excellent Pattern Recognition Accuracy of Neural Networks Using Hybrid Synapses and Complementary Training</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>42</volume><issue>4</issue><spage>609</spage><epage>612</epage><pages>609-612</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>To overcome the performance degradation in hardware neural networks (NNs) with non-ideal synapse devices, we proposed a novel neuromorphic architecture with both TiO x -based interfacial RRAM and CBRAM-based filamentary RRAM for highly accurate NN training and long-term inference reliability. We used a threshold-triggered training scheme, in which interfacial and filamentary RRAMs were programmed in a complementary fashion. This took advantage of the long retention time of the filamentary RRAM and the high-resolution, symmetric weight update in the interfacial RRAM. Additional evaluation of device parameters, such as linearity, precision, variation, and retention time, was conducted. An excellent pattern recognition accuracy of ~97% was achieved during training with the MNIST dataset. Thus, reliable inference accuracy after training was maintained using the filamentary RRAM.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2021.3058221</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1930-1914</orcidid><orcidid>https://orcid.org/0000-0003-4064-4575</orcidid><orcidid>https://orcid.org/0000-0002-7190-6980</orcidid><orcidid>https://orcid.org/0000-0002-0786-0885</orcidid><orcidid>https://orcid.org/0000-0002-0408-1165</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2021-04, Vol.42 (4), p.609-612
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_9350640
source IEEE Electronic Library (IEL)
subjects Accuracy
Artificial neural networks
Crossbar array
Hardware
Inference
Linearity
Neural networks
Object recognition
Pattern recognition
Performance degradation
Performance evaluation
synapse device
Synapses
Titanium oxides
Training
title Excellent Pattern Recognition Accuracy of Neural Networks Using Hybrid Synapses and Complementary Training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excellent%20Pattern%20Recognition%20Accuracy%20of%20Neural%20Networks%20Using%20Hybrid%20Synapses%20and%20Complementary%20Training&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Kwak,%20Myonghoon&rft.date=2021-04-01&rft.volume=42&rft.issue=4&rft.spage=609&rft.epage=612&rft.pages=609-612&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2021.3058221&rft_dat=%3Cproquest_RIE%3E2505613466%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505613466&rft_id=info:pmid/&rft_ieee_id=9350640&rfr_iscdi=true