Saliency Heat-Map as Visual Attention for Autonomous Driving Using Generative Adversarial Network (GAN)

The ability to sense and understanding the driving environment is a key technology for ADAS and autonomous driving. Human drivers have to pay more visual attention to important or target elements and ignore unnecessary ones present in their field of sight. A model that computes this visual attention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-06, Vol.23 (6), p.5360-5373
Hauptverfasser: Lateef, Fahad, Kas, Mohamed, Ruichek, Yassine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to sense and understanding the driving environment is a key technology for ADAS and autonomous driving. Human drivers have to pay more visual attention to important or target elements and ignore unnecessary ones present in their field of sight. A model that computes this visual attention of targets in a specific driving environment is essential and useful in supporting autonomous driving, object-specific tracking & detection, driving training, car collision warning, traffic sign detection, etc. In this paper, we propose a new framework of visual attention that can predict important objects in the driving scene using a conditional generative adversarial network. A large scale Visual Attention Driving Database (VADD) of saliency heat-maps is built from existing driving datasets using a saliency mechanism. The proposed framework model takes its strength from these saliency heat-maps as conditioning label variables. The results show that the proposed approach makes us able to predict heat-maps of most important objects in a driving environment.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2021.3053178