Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization
Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Pers...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Kurmi, Indrajit Schedl, David C. Bimber, Oliver |
description | Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Perspective-n-Point solutions by considering the underlying optimization as a focusing problem. We present an efficient image integration technique, which also reduces the parameter search space to achieve realistic processing times, and improves the quality of resulting synthetic integral images. |
doi_str_mv | 10.1109/LGRS.2021.3051718 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9340240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9340240</ieee_id><sourcerecordid>2612466686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-28b104c1c83038bad1e4c321a9870355a68caa794c13a5915ab657ecb9def9893</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4Cnrdmks1uciylVqGgtLV4C9l0lm5pszXZPdSnd5cWTzMD3_8PfIQ8AhsBMP0yny2WI844jASTkIO6IgOQUiVM5nDd76lMpFbft-Quxh1jPFUqH5D1Zx2RTkOoA13gpnVNVXtadtdr7dpIp35rvcMD-oZWnq62GA52T5cn32yxqRwdHzE0bUC6rmJr99Wv7RvuyU1p9xEfLnNIvl6nq8lbMv-YvU_G88RxLZqEqwJY6sApwYQq7AYwdYKD1SpnQkqbKWdtrjtEWKlB2iKTObpCb7DUSosheT73HkP902JszK5ug-9eGp4BT7MsU1lHwZlyoY4xYGmOoTrYcDLATK_P9PpMr89c9HWZp3OmQsR_Xou0M8fEH15na-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612466686</pqid></control><display><type>article</type><title>Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization</title><source>IEEE Electronic Library (IEL)</source><creator>Kurmi, Indrajit ; Schedl, David C. ; Bimber, Oliver</creator><creatorcontrib>Kurmi, Indrajit ; Schedl, David C. ; Bimber, Oliver</creatorcontrib><description>Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Perspective-n-Point solutions by considering the underlying optimization as a focusing problem. We present an efficient image integration technique, which also reduces the parameter search space to achieve realistic processing times, and improves the quality of resulting synthetic integral images.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3051718</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aperture imaging ; Cameras ; Enhancement ; Error reduction ; Estimation errors ; Force ; Forestry ; image processing and computer vision ; Image quality ; Imaging techniques ; Optical sectioning ; Optical sensors ; Optimization ; Pose estimation ; Sectioning ; Synthetic apertures ; Thermal sensors</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-28b104c1c83038bad1e4c321a9870355a68caa794c13a5915ab657ecb9def9893</citedby><cites>FETCH-LOGICAL-c293t-28b104c1c83038bad1e4c321a9870355a68caa794c13a5915ab657ecb9def9893</cites><orcidid>0000-0002-7621-3526 ; 0000-0001-7065-0509 ; 0000-0001-9009-7827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9340240$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9340240$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kurmi, Indrajit</creatorcontrib><creatorcontrib>Schedl, David C.</creatorcontrib><creatorcontrib>Bimber, Oliver</creatorcontrib><title>Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Perspective-n-Point solutions by considering the underlying optimization as a focusing problem. We present an efficient image integration technique, which also reduces the parameter search space to achieve realistic processing times, and improves the quality of resulting synthetic integral images.</description><subject>Aperture imaging</subject><subject>Cameras</subject><subject>Enhancement</subject><subject>Error reduction</subject><subject>Estimation errors</subject><subject>Force</subject><subject>Forestry</subject><subject>image processing and computer vision</subject><subject>Image quality</subject><subject>Imaging techniques</subject><subject>Optical sectioning</subject><subject>Optical sensors</subject><subject>Optimization</subject><subject>Pose estimation</subject><subject>Sectioning</subject><subject>Synthetic apertures</subject><subject>Thermal sensors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4Cnrdmks1uciylVqGgtLV4C9l0lm5pszXZPdSnd5cWTzMD3_8PfIQ8AhsBMP0yny2WI844jASTkIO6IgOQUiVM5nDd76lMpFbft-Quxh1jPFUqH5D1Zx2RTkOoA13gpnVNVXtadtdr7dpIp35rvcMD-oZWnq62GA52T5cn32yxqRwdHzE0bUC6rmJr99Wv7RvuyU1p9xEfLnNIvl6nq8lbMv-YvU_G88RxLZqEqwJY6sApwYQq7AYwdYKD1SpnQkqbKWdtrjtEWKlB2iKTObpCb7DUSosheT73HkP902JszK5ug-9eGp4BT7MsU1lHwZlyoY4xYGmOoTrYcDLATK_P9PpMr89c9HWZp3OmQsR_Xou0M8fEH15na-k</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kurmi, Indrajit</creator><creator>Schedl, David C.</creator><creator>Bimber, Oliver</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7621-3526</orcidid><orcidid>https://orcid.org/0000-0001-7065-0509</orcidid><orcidid>https://orcid.org/0000-0001-9009-7827</orcidid></search><sort><creationdate>2022</creationdate><title>Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization</title><author>Kurmi, Indrajit ; Schedl, David C. ; Bimber, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-28b104c1c83038bad1e4c321a9870355a68caa794c13a5915ab657ecb9def9893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aperture imaging</topic><topic>Cameras</topic><topic>Enhancement</topic><topic>Error reduction</topic><topic>Estimation errors</topic><topic>Force</topic><topic>Forestry</topic><topic>image processing and computer vision</topic><topic>Image quality</topic><topic>Imaging techniques</topic><topic>Optical sectioning</topic><topic>Optical sensors</topic><topic>Optimization</topic><topic>Pose estimation</topic><topic>Sectioning</topic><topic>Synthetic apertures</topic><topic>Thermal sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurmi, Indrajit</creatorcontrib><creatorcontrib>Schedl, David C.</creatorcontrib><creatorcontrib>Bimber, Oliver</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kurmi, Indrajit</au><au>Schedl, David C.</au><au>Bimber, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Perspective-n-Point solutions by considering the underlying optimization as a focusing problem. We present an efficient image integration technique, which also reduces the parameter search space to achieve realistic processing times, and improves the quality of resulting synthetic integral images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3051718</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7621-3526</orcidid><orcidid>https://orcid.org/0000-0001-7065-0509</orcidid><orcidid>https://orcid.org/0000-0001-9009-7827</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_9340240 |
source | IEEE Electronic Library (IEL) |
subjects | Aperture imaging Cameras Enhancement Error reduction Estimation errors Force Forestry image processing and computer vision Image quality Imaging techniques Optical sectioning Optical sensors Optimization Pose estimation Sectioning Synthetic apertures Thermal sensors |
title | Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pose%20Error%20Reduction%20for%20Focus%20Enhancement%20in%20Thermal%20Synthetic%20Aperture%20Visualization&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Kurmi,%20Indrajit&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3051718&rft_dat=%3Cproquest_RIE%3E2612466686%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612466686&rft_id=info:pmid/&rft_ieee_id=9340240&rfr_iscdi=true |