Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization

Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Pers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Kurmi, Indrajit, Schedl, David C., Bimber, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Kurmi, Indrajit
Schedl, David C.
Bimber, Oliver
description Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Perspective-n-Point solutions by considering the underlying optimization as a focusing problem. We present an efficient image integration technique, which also reduces the parameter search space to achieve realistic processing times, and improves the quality of resulting synthetic integral images.
doi_str_mv 10.1109/LGRS.2021.3051718
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9340240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9340240</ieee_id><sourcerecordid>2612466686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-28b104c1c83038bad1e4c321a9870355a68caa794c13a5915ab657ecb9def9893</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4Cnrdmks1uciylVqGgtLV4C9l0lm5pszXZPdSnd5cWTzMD3_8PfIQ8AhsBMP0yny2WI844jASTkIO6IgOQUiVM5nDd76lMpFbft-Quxh1jPFUqH5D1Zx2RTkOoA13gpnVNVXtadtdr7dpIp35rvcMD-oZWnq62GA52T5cn32yxqRwdHzE0bUC6rmJr99Wv7RvuyU1p9xEfLnNIvl6nq8lbMv-YvU_G88RxLZqEqwJY6sApwYQq7AYwdYKD1SpnQkqbKWdtrjtEWKlB2iKTObpCb7DUSosheT73HkP902JszK5ug-9eGp4BT7MsU1lHwZlyoY4xYGmOoTrYcDLATK_P9PpMr89c9HWZp3OmQsR_Xou0M8fEH15na-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612466686</pqid></control><display><type>article</type><title>Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization</title><source>IEEE Electronic Library (IEL)</source><creator>Kurmi, Indrajit ; Schedl, David C. ; Bimber, Oliver</creator><creatorcontrib>Kurmi, Indrajit ; Schedl, David C. ; Bimber, Oliver</creatorcontrib><description>Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Perspective-n-Point solutions by considering the underlying optimization as a focusing problem. We present an efficient image integration technique, which also reduces the parameter search space to achieve realistic processing times, and improves the quality of resulting synthetic integral images.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3051718</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aperture imaging ; Cameras ; Enhancement ; Error reduction ; Estimation errors ; Force ; Forestry ; image processing and computer vision ; Image quality ; Imaging techniques ; Optical sectioning ; Optical sensors ; Optimization ; Pose estimation ; Sectioning ; Synthetic apertures ; Thermal sensors</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-28b104c1c83038bad1e4c321a9870355a68caa794c13a5915ab657ecb9def9893</citedby><cites>FETCH-LOGICAL-c293t-28b104c1c83038bad1e4c321a9870355a68caa794c13a5915ab657ecb9def9893</cites><orcidid>0000-0002-7621-3526 ; 0000-0001-7065-0509 ; 0000-0001-9009-7827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9340240$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9340240$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kurmi, Indrajit</creatorcontrib><creatorcontrib>Schedl, David C.</creatorcontrib><creatorcontrib>Bimber, Oliver</creatorcontrib><title>Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Perspective-n-Point solutions by considering the underlying optimization as a focusing problem. We present an efficient image integration technique, which also reduces the parameter search space to achieve realistic processing times, and improves the quality of resulting synthetic integral images.</description><subject>Aperture imaging</subject><subject>Cameras</subject><subject>Enhancement</subject><subject>Error reduction</subject><subject>Estimation errors</subject><subject>Force</subject><subject>Forestry</subject><subject>image processing and computer vision</subject><subject>Image quality</subject><subject>Imaging techniques</subject><subject>Optical sectioning</subject><subject>Optical sensors</subject><subject>Optimization</subject><subject>Pose estimation</subject><subject>Sectioning</subject><subject>Synthetic apertures</subject><subject>Thermal sensors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4Cnrdmks1uciylVqGgtLV4C9l0lm5pszXZPdSnd5cWTzMD3_8PfIQ8AhsBMP0yny2WI844jASTkIO6IgOQUiVM5nDd76lMpFbft-Quxh1jPFUqH5D1Zx2RTkOoA13gpnVNVXtadtdr7dpIp35rvcMD-oZWnq62GA52T5cn32yxqRwdHzE0bUC6rmJr99Wv7RvuyU1p9xEfLnNIvl6nq8lbMv-YvU_G88RxLZqEqwJY6sApwYQq7AYwdYKD1SpnQkqbKWdtrjtEWKlB2iKTObpCb7DUSosheT73HkP902JszK5ug-9eGp4BT7MsU1lHwZlyoY4xYGmOoTrYcDLATK_P9PpMr89c9HWZp3OmQsR_Xou0M8fEH15na-k</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kurmi, Indrajit</creator><creator>Schedl, David C.</creator><creator>Bimber, Oliver</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7621-3526</orcidid><orcidid>https://orcid.org/0000-0001-7065-0509</orcidid><orcidid>https://orcid.org/0000-0001-9009-7827</orcidid></search><sort><creationdate>2022</creationdate><title>Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization</title><author>Kurmi, Indrajit ; Schedl, David C. ; Bimber, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-28b104c1c83038bad1e4c321a9870355a68caa794c13a5915ab657ecb9def9893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aperture imaging</topic><topic>Cameras</topic><topic>Enhancement</topic><topic>Error reduction</topic><topic>Estimation errors</topic><topic>Force</topic><topic>Forestry</topic><topic>image processing and computer vision</topic><topic>Image quality</topic><topic>Imaging techniques</topic><topic>Optical sectioning</topic><topic>Optical sensors</topic><topic>Optimization</topic><topic>Pose estimation</topic><topic>Sectioning</topic><topic>Synthetic apertures</topic><topic>Thermal sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurmi, Indrajit</creatorcontrib><creatorcontrib>Schedl, David C.</creatorcontrib><creatorcontrib>Bimber, Oliver</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kurmi, Indrajit</au><au>Schedl, David C.</au><au>Bimber, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Perspective-n-Point solutions by considering the underlying optimization as a focusing problem. We present an efficient image integration technique, which also reduces the parameter search space to achieve realistic processing times, and improves the quality of resulting synthetic integral images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3051718</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7621-3526</orcidid><orcidid>https://orcid.org/0000-0001-7065-0509</orcidid><orcidid>https://orcid.org/0000-0001-9009-7827</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_9340240
source IEEE Electronic Library (IEL)
subjects Aperture imaging
Cameras
Enhancement
Error reduction
Estimation errors
Force
Forestry
image processing and computer vision
Image quality
Imaging techniques
Optical sectioning
Optical sensors
Optimization
Pose estimation
Sectioning
Synthetic apertures
Thermal sensors
title Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pose%20Error%20Reduction%20for%20Focus%20Enhancement%20in%20Thermal%20Synthetic%20Aperture%20Visualization&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Kurmi,%20Indrajit&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3051718&rft_dat=%3Cproquest_RIE%3E2612466686%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612466686&rft_id=info:pmid/&rft_ieee_id=9340240&rfr_iscdi=true