Pose Error Reduction for Focus Enhancement in Thermal Synthetic Aperture Visualization
Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Pers...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Airborne optical sectioning, an effective aerial synthetic aperture imaging technique for revealing artifacts occluded by forests, requires precise measurements of drone poses. In this letter, we present a new approach for reducing pose estimation errors beyond the possibilities of conventional Perspective-n-Point solutions by considering the underlying optimization as a focusing problem. We present an efficient image integration technique, which also reduces the parameter search space to achieve realistic processing times, and improves the quality of resulting synthetic integral images. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2021.3051718 |