Fast LDPC GPU Decoder for Cloud RAN
The graphical processing unit (GPU), as a digital signal processing accelerator for cloud RAN, is investigated. This letter presents a new design for a 5G NR low-density parity check code decoder running on a GPU. The algorithm is flexibly adaptable to GPU architecture to achieve high resource utili...
Gespeichert in:
Veröffentlicht in: | IEEE embedded systems letters 2021-12, Vol.13 (4), p.170-173 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | 4 |
container_start_page | 170 |
container_title | IEEE embedded systems letters |
container_volume | 13 |
creator | Ling, Jonathan Cautereels, Paul |
description | The graphical processing unit (GPU), as a digital signal processing accelerator for cloud RAN, is investigated. This letter presents a new design for a 5G NR low-density parity check code decoder running on a GPU. The algorithm is flexibly adaptable to GPU architecture to achieve high resource utilization as well as low latency. It improves on the layered algorithm by increasing parallelism on a single code word. The flexible GPU decoder (on a 24 core GPU) was found to have 5\times higher throughput compared to a recent GPU flooding decoder and 3\times higher throughput compared to a field programmable gate array (FPGA) decoder (757K gate). The flexible GPU decoder exhibits 1/3 decoding power efficiency of the FPGA typical of general-purpose processors. For rapid deployment and flexibility, GPUs may be suitable as cloud RAN accelerators. |
doi_str_mv | 10.1109/LES.2021.3052714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9328563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9328563</ieee_id><sourcerecordid>2601645222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-11b8bfa239222ac9cdede89057d35cff49eb6eb88ccdc0b793bcae2ccdc3d32e3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOObeBV8KPrcmuSZtHkf3Q6HoUPccmuQKG9POpH3wvzd1Y_dyd_D9fu_4EHLPaMYYVU_18iPjlLMMqOAFy6_IhKkcUioLdn2ZJdySWQh7GkvkhQAxIY-rJvRJvdhUyXqzTRZoO4c-aTufVIducMn7_PWO3LTNIeDs3Kdku1p-Vs9p_bZ-qeZ1arlifcqYKU3bcFCc88Yq69BhqagoHAjbtrlCI9GUpbXOUlMoMLZBPm7ggCNM4zf_uUff_QwYer3vBv8dT2ouKZO5iMFRRU8q67sQPLb66Hdfjf_VjOqRho409EhDn2lEy8PJskPEi1wBL4UE-AOH_VhS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601645222</pqid></control><display><type>article</type><title>Fast LDPC GPU Decoder for Cloud RAN</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Ling, Jonathan ; Cautereels, Paul</creator><creatorcontrib>Ling, Jonathan ; Cautereels, Paul</creatorcontrib><description><![CDATA[The graphical processing unit (GPU), as a digital signal processing accelerator for cloud RAN, is investigated. This letter presents a new design for a 5G NR low-density parity check code decoder running on a GPU. The algorithm is flexibly adaptable to GPU architecture to achieve high resource utilization as well as low latency. It improves on the layered algorithm by increasing parallelism on a single code word. The flexible GPU decoder (on a 24 core GPU) was found to have <inline-formula> <tex-math notation="LaTeX">5\times </tex-math></inline-formula> higher throughput compared to a recent GPU flooding decoder and <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> higher throughput compared to a field programmable gate array (FPGA) decoder (757K gate). The flexible GPU decoder exhibits 1/3 decoding power efficiency of the FPGA typical of general-purpose processors. For rapid deployment and flexibility, GPUs may be suitable as cloud RAN accelerators.]]></description><identifier>ISSN: 1943-0663</identifier><identifier>EISSN: 1943-0671</identifier><identifier>DOI: 10.1109/LES.2021.3052714</identifier><identifier>CODEN: ESLMAP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; 5G wireless ; Algorithms ; Clouds ; Decoding ; Digital signal processing ; Field programmable gate arrays ; Flooding ; forward error correction ; Graphics processing units ; graphics processors ; low-density parity check (LDPC) ; Message systems ; Parallel processing ; Parity check codes ; Power efficiency ; Resource utilization</subject><ispartof>IEEE embedded systems letters, 2021-12, Vol.13 (4), p.170-173</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-11b8bfa239222ac9cdede89057d35cff49eb6eb88ccdc0b793bcae2ccdc3d32e3</citedby><cites>FETCH-LOGICAL-c291t-11b8bfa239222ac9cdede89057d35cff49eb6eb88ccdc0b793bcae2ccdc3d32e3</cites><orcidid>0000-0003-0108-8908 ; 0000-0001-5098-8027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9328563$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9328563$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ling, Jonathan</creatorcontrib><creatorcontrib>Cautereels, Paul</creatorcontrib><title>Fast LDPC GPU Decoder for Cloud RAN</title><title>IEEE embedded systems letters</title><addtitle>LES</addtitle><description><![CDATA[The graphical processing unit (GPU), as a digital signal processing accelerator for cloud RAN, is investigated. This letter presents a new design for a 5G NR low-density parity check code decoder running on a GPU. The algorithm is flexibly adaptable to GPU architecture to achieve high resource utilization as well as low latency. It improves on the layered algorithm by increasing parallelism on a single code word. The flexible GPU decoder (on a 24 core GPU) was found to have <inline-formula> <tex-math notation="LaTeX">5\times </tex-math></inline-formula> higher throughput compared to a recent GPU flooding decoder and <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> higher throughput compared to a field programmable gate array (FPGA) decoder (757K gate). The flexible GPU decoder exhibits 1/3 decoding power efficiency of the FPGA typical of general-purpose processors. For rapid deployment and flexibility, GPUs may be suitable as cloud RAN accelerators.]]></description><subject>5G mobile communication</subject><subject>5G wireless</subject><subject>Algorithms</subject><subject>Clouds</subject><subject>Decoding</subject><subject>Digital signal processing</subject><subject>Field programmable gate arrays</subject><subject>Flooding</subject><subject>forward error correction</subject><subject>Graphics processing units</subject><subject>graphics processors</subject><subject>low-density parity check (LDPC)</subject><subject>Message systems</subject><subject>Parallel processing</subject><subject>Parity check codes</subject><subject>Power efficiency</subject><subject>Resource utilization</subject><issn>1943-0663</issn><issn>1943-0671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOObeBV8KPrcmuSZtHkf3Q6HoUPccmuQKG9POpH3wvzd1Y_dyd_D9fu_4EHLPaMYYVU_18iPjlLMMqOAFy6_IhKkcUioLdn2ZJdySWQh7GkvkhQAxIY-rJvRJvdhUyXqzTRZoO4c-aTufVIducMn7_PWO3LTNIeDs3Kdku1p-Vs9p_bZ-qeZ1arlifcqYKU3bcFCc88Yq69BhqagoHAjbtrlCI9GUpbXOUlMoMLZBPm7ggCNM4zf_uUff_QwYer3vBv8dT2ouKZO5iMFRRU8q67sQPLb66Hdfjf_VjOqRho409EhDn2lEy8PJskPEi1wBL4UE-AOH_VhS</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Ling, Jonathan</creator><creator>Cautereels, Paul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0108-8908</orcidid><orcidid>https://orcid.org/0000-0001-5098-8027</orcidid></search><sort><creationdate>202112</creationdate><title>Fast LDPC GPU Decoder for Cloud RAN</title><author>Ling, Jonathan ; Cautereels, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-11b8bfa239222ac9cdede89057d35cff49eb6eb88ccdc0b793bcae2ccdc3d32e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5G mobile communication</topic><topic>5G wireless</topic><topic>Algorithms</topic><topic>Clouds</topic><topic>Decoding</topic><topic>Digital signal processing</topic><topic>Field programmable gate arrays</topic><topic>Flooding</topic><topic>forward error correction</topic><topic>Graphics processing units</topic><topic>graphics processors</topic><topic>low-density parity check (LDPC)</topic><topic>Message systems</topic><topic>Parallel processing</topic><topic>Parity check codes</topic><topic>Power efficiency</topic><topic>Resource utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Jonathan</creatorcontrib><creatorcontrib>Cautereels, Paul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE embedded systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ling, Jonathan</au><au>Cautereels, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast LDPC GPU Decoder for Cloud RAN</atitle><jtitle>IEEE embedded systems letters</jtitle><stitle>LES</stitle><date>2021-12</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>170</spage><epage>173</epage><pages>170-173</pages><issn>1943-0663</issn><eissn>1943-0671</eissn><coden>ESLMAP</coden><abstract><![CDATA[The graphical processing unit (GPU), as a digital signal processing accelerator for cloud RAN, is investigated. This letter presents a new design for a 5G NR low-density parity check code decoder running on a GPU. The algorithm is flexibly adaptable to GPU architecture to achieve high resource utilization as well as low latency. It improves on the layered algorithm by increasing parallelism on a single code word. The flexible GPU decoder (on a 24 core GPU) was found to have <inline-formula> <tex-math notation="LaTeX">5\times </tex-math></inline-formula> higher throughput compared to a recent GPU flooding decoder and <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> higher throughput compared to a field programmable gate array (FPGA) decoder (757K gate). The flexible GPU decoder exhibits 1/3 decoding power efficiency of the FPGA typical of general-purpose processors. For rapid deployment and flexibility, GPUs may be suitable as cloud RAN accelerators.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LES.2021.3052714</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0108-8908</orcidid><orcidid>https://orcid.org/0000-0001-5098-8027</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1943-0663 |
ispartof | IEEE embedded systems letters, 2021-12, Vol.13 (4), p.170-173 |
issn | 1943-0663 1943-0671 |
language | eng |
recordid | cdi_ieee_primary_9328563 |
source | IEEE/IET Electronic Library (IEL) |
subjects | 5G mobile communication 5G wireless Algorithms Clouds Decoding Digital signal processing Field programmable gate arrays Flooding forward error correction Graphics processing units graphics processors low-density parity check (LDPC) Message systems Parallel processing Parity check codes Power efficiency Resource utilization |
title | Fast LDPC GPU Decoder for Cloud RAN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20LDPC%20GPU%20Decoder%20for%20Cloud%20RAN&rft.jtitle=IEEE%20embedded%20systems%20letters&rft.au=Ling,%20Jonathan&rft.date=2021-12&rft.volume=13&rft.issue=4&rft.spage=170&rft.epage=173&rft.pages=170-173&rft.issn=1943-0663&rft.eissn=1943-0671&rft.coden=ESLMAP&rft_id=info:doi/10.1109/LES.2021.3052714&rft_dat=%3Cproquest_RIE%3E2601645222%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601645222&rft_id=info:pmid/&rft_ieee_id=9328563&rfr_iscdi=true |