Distributed sensor fusion for object position estimation by multi-robot systems
We present a method for representing, communicating and fusing distributed, noisy and uncertain observations of an object by multiple robots. The approach relies on re-parameterization of the canonical two-dimensional Gaussian distribution that corresponds more naturally to the observation space of...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a method for representing, communicating and fusing distributed, noisy and uncertain observations of an object by multiple robots. The approach relies on re-parameterization of the canonical two-dimensional Gaussian distribution that corresponds more naturally to the observation space of a robot. The approach enables two or more observers to achieve greater effective sensor coverage of the environment and improved accuracy in object position estimation. We demonstrate empirically that, when using our approach, more observers achieve more accurate estimations of an object's position. The method is tested in three application areas, including object location, object tracking, and ball position estimation for robotic soccer. Quantitative evaluations of the technique in use on mobile robots are provided. |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ROBOT.2001.932739 |