Robotic Information Gathering with Reinforcement Learning assisted by Domain Knowledge: an Application to Gas Source Localization
Gas source localization tackles the problem of finding leakages of hazardous substances such as poisonous gases or radiation in the event of a disaster. In order to avoid threats for human operators, autonomous robots dispatched for localizing potential gas sources are preferable. This work investig...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021-01, Vol.9, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gas source localization tackles the problem of finding leakages of hazardous substances such as poisonous gases or radiation in the event of a disaster. In order to avoid threats for human operators, autonomous robots dispatched for localizing potential gas sources are preferable. This work investigates a Reinforcement Learning framework that allows a robotic agent to learn how to localize gas sources. We propose a solution that assists Reinforcement Learning with existing domain knowledge based on a model of the gas dispersion process. In particular, we incorporate a priori domain knowledge by designing appropriate rewards and observation inputs for the Reinforcement Learning algorithm. We show that a robot trained with our proposed method outperforms state-of-the-art gas source localization strategies, as well as robots that are trained without additional domain knowledge. Furthermore, the framework developed in this work can also be generalized to a large variety of information gathering tasks. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3052024 |