Robotic Information Gathering with Reinforcement Learning assisted by Domain Knowledge: an Application to Gas Source Localization

Gas source localization tackles the problem of finding leakages of hazardous substances such as poisonous gases or radiation in the event of a disaster. In order to avoid threats for human operators, autonomous robots dispatched for localizing potential gas sources are preferable. This work investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021-01, Vol.9, p.1-1
Hauptverfasser: Wiedemann, Thomas, Vlaicu, Cosmin, Josifovski, Josip, Viseras, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gas source localization tackles the problem of finding leakages of hazardous substances such as poisonous gases or radiation in the event of a disaster. In order to avoid threats for human operators, autonomous robots dispatched for localizing potential gas sources are preferable. This work investigates a Reinforcement Learning framework that allows a robotic agent to learn how to localize gas sources. We propose a solution that assists Reinforcement Learning with existing domain knowledge based on a model of the gas dispersion process. In particular, we incorporate a priori domain knowledge by designing appropriate rewards and observation inputs for the Reinforcement Learning algorithm. We show that a robot trained with our proposed method outperforms state-of-the-art gas source localization strategies, as well as robots that are trained without additional domain knowledge. Furthermore, the framework developed in this work can also be generalized to a large variety of information gathering tasks.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3052024