Setting-Less Nonunit Protection Method for DC Line Faults in VSC-MTdc Systems
Existing nonunit protection schemes inevitably require setting, which is a serious problem in practical engineering. Faults occurred at different fault zones will result in different equivalent models, therefore, the fault zone can be determined by recognizing which equivalent model the fault fits w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2022-01, Vol.69 (1), p.495-505 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Existing nonunit protection schemes inevitably require setting, which is a serious problem in practical engineering. Faults occurred at different fault zones will result in different equivalent models, therefore, the fault zone can be determined by recognizing which equivalent model the fault fits well with. In this article, this "model recognition" idea is introduced in fault identification and a "setting-less" protection method is proposed. First, the Peterson equivalent circuits when faults occur at backward external zone, internal zone, and forward external zone are presented, respectively. Accordingly, the corresponding three fault voltage expressions are derived, which are defined as three fault modes. Then, the three fault modes are used to approximate the measured fault voltage using Levenberg-Marquardt optimal approximation method. The fault mode that best fits the measured fault voltage is recognized as the final determined fault mode, which is used for fault identification without setting threshold value. Numerous test studies carried out in Power Systems Computer Aided Design/Electromagnetic Transients including DC (PSCAD/EMTDC) and real-time digital simulator have demonstrated that the proposed method can be utilized for different multiterminal dc systems and is effective under different fault locations, different fault types, and high fault impedances. The proposed method does not require high sampling frequency and has good robustness against measuring noise. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2021.3050380 |