Distributed Learning in Non-Convex Environments- Part II: Polynomial Escape From Saddle-Points
The diffusion strategy for distributed learning from streaming data employs local stochastic gradient updates along with exchange of iterates over neighborhoods. In Part I [3] of this work we established that agents cluster around a network centroid and proceeded to study the dynamics of this point....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2021, Vol.69, p.1257-1270 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The diffusion strategy for distributed learning from streaming data employs local stochastic gradient updates along with exchange of iterates over neighborhoods. In Part I [3] of this work we established that agents cluster around a network centroid and proceeded to study the dynamics of this point. We established expected descent in non-convex environments in the large-gradient regime and introduced a short-term model to examine the dynamics over finite-time horizons. Using this model, we establish in this work that the diffusion strategy is able to escape from strict saddle-points in O(1/\mu) iterations, where \mu denotes the step-size; it is also able to return approximately second-order stationary points in a polynomial number of iterations. Relative to prior works on the polynomial escape from saddle-points, most of which focus on centralized perturbed or stochastic gradient descent, our approach requires less restrictive conditions on the gradient noise process. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2021.3050840 |