UCA-Based OAM Non-Orthogonal Multi-Mode Multiplexing

Electromagnetic waves carrying orbital angular momentum (OAM) can improve the spectral efficiency of communication systems by multiplexing a number of OAM modes. However, since being not able to perform water-filling power allocation and adaptive modulation for each sub-channel like closed-loop mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Open Journal of Antennas and Propagation 2021, Vol.2, p.181-190
Hauptverfasser: Chen, Rui, Yao, Runzhong, Long, Wen-Xuan, Moretti, Marco, Li, Jiandong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electromagnetic waves carrying orbital angular momentum (OAM) can improve the spectral efficiency of communication systems by multiplexing a number of OAM modes. However, since being not able to perform water-filling power allocation and adaptive modulation for each sub-channel like closed-loop multiple-input multiple-output (MIMO) systems, the traditional orthogonal multi-mode OAM multiplexing system usually has poor bit error rate (BER) performance due to the inherent large divergence angle of high-order orthogonal OAM beams. Therefore, in this article we propose a non-orthogonal OAM (NO-OAM) multi-mode multiplexing scheme based on uniform circular array (UCA), which regulates the divergence angles of all non-orthogonal OAM beams to be the same, circumventing the problem that large beam divergence of high-order orthogonal OAM modes results in low received signal-to-noise ratio (SNR) at the receive UCA with a fixed aperture. Mathematical analysis and numerical simulations show that in contrast to the existing uniform concentric circular array (UCCA) beam adjustment scheme, the proposed NO-OAM scheme has slightly better beam adjustment effect but with only one UCA. Moreover, in contrast to the traditional orthogonal OAM multi-mode transmission, the proposed NO-OAM multi-mode multiplexing scheme has asymptotically equivalent channel capacity and much lower BER.
ISSN:2637-6431
2637-6431
DOI:10.1109/OJAP.2021.3051474