Extending FMECA-health management design optimization for aerospace applications
Health management is a philosophy that merges component and system level health monitoring, consisting of anomaly detection, diagnostic and prognostic technologies, with the operations and maintenance arenas. The concepts of health management, in particular health monitoring system design, have not...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Health management is a philosophy that merges component and system level health monitoring, consisting of anomaly detection, diagnostic and prognostic technologies, with the operations and maintenance arenas. The concepts of health management, in particular health monitoring system design, have not traditionally been an integral aspect of the overall system design process. This may be partly due to the fact that detailed cost/benefit analysis of health management system configurations cannot be fully realized at this stage. This paper presents an approach that extends the traditional Failure Mode, Effects and Criticality Analysis (FMECA) to create a virtual environment in which Health Monitoring architectures can be evaluated from a cost/benefit standpoint. This health monitoring system design strategy allows for the inclusion of sensors and diagnostic/prognostic technologies to be generated from traditional FMECA information. This approach also introduces an environment for enhanced realization of component design requirements and the anomaly, diagnostic, and prognostic technologies themselves. |
---|---|
ISSN: | 1095-323X |
DOI: | 10.1109/AERO.2001.931328 |