A New Frequency Adaptive Second-Order Disturbance Observer for Sensorless Vector Control of Interior Permanent Magnet Synchronous Motor
In this article, a new frequency adaptive second-order disturbance observer (FASODO) for back electromotive force (EMF) and active flux estimation is proposed using the active flux model of interior permanent magnet synchronous motors. FASODO is a frequency adaptive approach and eliminates the phase...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2021-12, Vol.68 (12), p.11847-11857 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11857 |
---|---|
container_issue | 12 |
container_start_page | 11847 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 68 |
creator | Woldegiorgis, Abebe Teklu Ge, Xinglai Wang, Huimin Hassan, Mannan |
description | In this article, a new frequency adaptive second-order disturbance observer (FASODO) for back electromotive force (EMF) and active flux estimation is proposed using the active flux model of interior permanent magnet synchronous motors. FASODO is a frequency adaptive approach and eliminates the phase delay compensator demand of the traditional sliding mode observer-based back EMF estimator. Besides, FASODO estimates the active flux and the back EMF simultaneously. As a result, a quadrature phase-locked loop (Q-PLL) using either the back EMF or the active flux and a tan inverse approach can be used for speed-position identification. Meanwhile, an integrally compensated Q-PLL is designed to overcome the traditional Q-PLL position estimation error during ramp frequency tracking. The design guideline of FASODO and the integrally compensated Q-PLL are provided. A comparative analysis with traditional SMO shows that the proposed approach can deliver a better sensorless control performance. Furthermore, a comparison with a frequency adaptive complex coefficient filter enhanced SMO shows a comparable result, while the proposed approach additionally delivers the active flux. The approach is verified using the Texas Digital Signal Processor (TMS320F28335) and RT-LAB Real-Time Simulator, taking into account different operating conditions. |
doi_str_mv | 10.1109/TIE.2020.3047065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9311816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9311816</ieee_id><sourcerecordid>2568064153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-4a6292a2fddd1bbec73bc792d506f07ef79dddcbc693e649171ae554353f3ef13</originalsourceid><addsrcrecordid>eNo9kE1rGzEQhkVIIU6ae6AXQc_rSquVZB2Na7eGJA7k47potaN2jS25IznBvyB_uwo2OQlePe8M8xByw9mYc2Z-PC3n45rVbCxYo5mSZ2TEpdSVMc3knIxYrScVY426IJcprRnjjeRyRN6n9B7e6ALh3x6CO9Bpb3d5eAX6CC6GvlphD0h_DinvsbPBAV11CfC1hD5ioUKKuIGU6Au4XJJZDBnjhkZPlyEDDiV7ANzaACHTO_snQKaPh-D-Ygxxn-hdLLWv5Iu3mwTXp_eKPC_mT7Pf1e3q13I2va2ckDpXjVW1qW3t-77nXQdOi85pU_eSKc80eG3Kj-ucMgJUY7jmFqRshBRegOfiinw_zt1hLBen3K7jHkNZ2dZSTZhquBSFYkfKYUwJwbc7HLYWDy1n7YfutuhuP3S3J92l8u1YGQDgEzeC8wlX4j_KbX4d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568064153</pqid></control><display><type>article</type><title>A New Frequency Adaptive Second-Order Disturbance Observer for Sensorless Vector Control of Interior Permanent Magnet Synchronous Motor</title><source>IEEE Electronic Library (IEL)</source><creator>Woldegiorgis, Abebe Teklu ; Ge, Xinglai ; Wang, Huimin ; Hassan, Mannan</creator><creatorcontrib>Woldegiorgis, Abebe Teklu ; Ge, Xinglai ; Wang, Huimin ; Hassan, Mannan</creatorcontrib><description>In this article, a new frequency adaptive second-order disturbance observer (FASODO) for back electromotive force (EMF) and active flux estimation is proposed using the active flux model of interior permanent magnet synchronous motors. FASODO is a frequency adaptive approach and eliminates the phase delay compensator demand of the traditional sliding mode observer-based back EMF estimator. Besides, FASODO estimates the active flux and the back EMF simultaneously. As a result, a quadrature phase-locked loop (Q-PLL) using either the back EMF or the active flux and a tan inverse approach can be used for speed-position identification. Meanwhile, an integrally compensated Q-PLL is designed to overcome the traditional Q-PLL position estimation error during ramp frequency tracking. The design guideline of FASODO and the integrally compensated Q-PLL are provided. A comparative analysis with traditional SMO shows that the proposed approach can deliver a better sensorless control performance. Furthermore, a comparison with a frequency adaptive complex coefficient filter enhanced SMO shows a comparable result, while the proposed approach additionally delivers the active flux. The approach is verified using the Texas Digital Signal Processor (TMS320F28335) and RT-LAB Real-Time Simulator, taking into account different operating conditions.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.3047065</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active flux ; Adaptation models ; Adaptive control ; Back electromotive force ; Compensators ; Delays ; Digital signal processors ; Directional control ; disturbance observer ; Disturbance observers ; Electromotive forces ; Harmonic analysis ; interior permanent magnet synchronous motor (IPMSM) ; Load modeling ; Microprocessors ; Permanent magnet motors ; Permanent magnets ; Phase locked loops ; Quadratures ; Sensorless control ; Signal processing ; Sliding mode control ; speed sensorless control ; Synchronous motors</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-12, Vol.68 (12), p.11847-11857</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-4a6292a2fddd1bbec73bc792d506f07ef79dddcbc693e649171ae554353f3ef13</citedby><cites>FETCH-LOGICAL-c357t-4a6292a2fddd1bbec73bc792d506f07ef79dddcbc693e649171ae554353f3ef13</cites><orcidid>0000-0001-8256-8449 ; 0000-0001-7297-7863 ; 0000-0003-4331-941X ; 0000-0002-8144-4847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9311816$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9311816$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Woldegiorgis, Abebe Teklu</creatorcontrib><creatorcontrib>Ge, Xinglai</creatorcontrib><creatorcontrib>Wang, Huimin</creatorcontrib><creatorcontrib>Hassan, Mannan</creatorcontrib><title>A New Frequency Adaptive Second-Order Disturbance Observer for Sensorless Vector Control of Interior Permanent Magnet Synchronous Motor</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this article, a new frequency adaptive second-order disturbance observer (FASODO) for back electromotive force (EMF) and active flux estimation is proposed using the active flux model of interior permanent magnet synchronous motors. FASODO is a frequency adaptive approach and eliminates the phase delay compensator demand of the traditional sliding mode observer-based back EMF estimator. Besides, FASODO estimates the active flux and the back EMF simultaneously. As a result, a quadrature phase-locked loop (Q-PLL) using either the back EMF or the active flux and a tan inverse approach can be used for speed-position identification. Meanwhile, an integrally compensated Q-PLL is designed to overcome the traditional Q-PLL position estimation error during ramp frequency tracking. The design guideline of FASODO and the integrally compensated Q-PLL are provided. A comparative analysis with traditional SMO shows that the proposed approach can deliver a better sensorless control performance. Furthermore, a comparison with a frequency adaptive complex coefficient filter enhanced SMO shows a comparable result, while the proposed approach additionally delivers the active flux. The approach is verified using the Texas Digital Signal Processor (TMS320F28335) and RT-LAB Real-Time Simulator, taking into account different operating conditions.</description><subject>Active flux</subject><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Back electromotive force</subject><subject>Compensators</subject><subject>Delays</subject><subject>Digital signal processors</subject><subject>Directional control</subject><subject>disturbance observer</subject><subject>Disturbance observers</subject><subject>Electromotive forces</subject><subject>Harmonic analysis</subject><subject>interior permanent magnet synchronous motor (IPMSM)</subject><subject>Load modeling</subject><subject>Microprocessors</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>Phase locked loops</subject><subject>Quadratures</subject><subject>Sensorless control</subject><subject>Signal processing</subject><subject>Sliding mode control</subject><subject>speed sensorless control</subject><subject>Synchronous motors</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rGzEQhkVIIU6ae6AXQc_rSquVZB2Na7eGJA7k47potaN2jS25IznBvyB_uwo2OQlePe8M8xByw9mYc2Z-PC3n45rVbCxYo5mSZ2TEpdSVMc3knIxYrScVY426IJcprRnjjeRyRN6n9B7e6ALh3x6CO9Bpb3d5eAX6CC6GvlphD0h_DinvsbPBAV11CfC1hD5ioUKKuIGU6Au4XJJZDBnjhkZPlyEDDiV7ANzaACHTO_snQKaPh-D-Ygxxn-hdLLWv5Iu3mwTXp_eKPC_mT7Pf1e3q13I2va2ckDpXjVW1qW3t-77nXQdOi85pU_eSKc80eG3Kj-ucMgJUY7jmFqRshBRegOfiinw_zt1hLBen3K7jHkNZ2dZSTZhquBSFYkfKYUwJwbc7HLYWDy1n7YfutuhuP3S3J92l8u1YGQDgEzeC8wlX4j_KbX4d</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Woldegiorgis, Abebe Teklu</creator><creator>Ge, Xinglai</creator><creator>Wang, Huimin</creator><creator>Hassan, Mannan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8256-8449</orcidid><orcidid>https://orcid.org/0000-0001-7297-7863</orcidid><orcidid>https://orcid.org/0000-0003-4331-941X</orcidid><orcidid>https://orcid.org/0000-0002-8144-4847</orcidid></search><sort><creationdate>20211201</creationdate><title>A New Frequency Adaptive Second-Order Disturbance Observer for Sensorless Vector Control of Interior Permanent Magnet Synchronous Motor</title><author>Woldegiorgis, Abebe Teklu ; Ge, Xinglai ; Wang, Huimin ; Hassan, Mannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-4a6292a2fddd1bbec73bc792d506f07ef79dddcbc693e649171ae554353f3ef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active flux</topic><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Back electromotive force</topic><topic>Compensators</topic><topic>Delays</topic><topic>Digital signal processors</topic><topic>Directional control</topic><topic>disturbance observer</topic><topic>Disturbance observers</topic><topic>Electromotive forces</topic><topic>Harmonic analysis</topic><topic>interior permanent magnet synchronous motor (IPMSM)</topic><topic>Load modeling</topic><topic>Microprocessors</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>Phase locked loops</topic><topic>Quadratures</topic><topic>Sensorless control</topic><topic>Signal processing</topic><topic>Sliding mode control</topic><topic>speed sensorless control</topic><topic>Synchronous motors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woldegiorgis, Abebe Teklu</creatorcontrib><creatorcontrib>Ge, Xinglai</creatorcontrib><creatorcontrib>Wang, Huimin</creatorcontrib><creatorcontrib>Hassan, Mannan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Woldegiorgis, Abebe Teklu</au><au>Ge, Xinglai</au><au>Wang, Huimin</au><au>Hassan, Mannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Frequency Adaptive Second-Order Disturbance Observer for Sensorless Vector Control of Interior Permanent Magnet Synchronous Motor</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>11847</spage><epage>11857</epage><pages>11847-11857</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this article, a new frequency adaptive second-order disturbance observer (FASODO) for back electromotive force (EMF) and active flux estimation is proposed using the active flux model of interior permanent magnet synchronous motors. FASODO is a frequency adaptive approach and eliminates the phase delay compensator demand of the traditional sliding mode observer-based back EMF estimator. Besides, FASODO estimates the active flux and the back EMF simultaneously. As a result, a quadrature phase-locked loop (Q-PLL) using either the back EMF or the active flux and a tan inverse approach can be used for speed-position identification. Meanwhile, an integrally compensated Q-PLL is designed to overcome the traditional Q-PLL position estimation error during ramp frequency tracking. The design guideline of FASODO and the integrally compensated Q-PLL are provided. A comparative analysis with traditional SMO shows that the proposed approach can deliver a better sensorless control performance. Furthermore, a comparison with a frequency adaptive complex coefficient filter enhanced SMO shows a comparable result, while the proposed approach additionally delivers the active flux. The approach is verified using the Texas Digital Signal Processor (TMS320F28335) and RT-LAB Real-Time Simulator, taking into account different operating conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.3047065</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8256-8449</orcidid><orcidid>https://orcid.org/0000-0001-7297-7863</orcidid><orcidid>https://orcid.org/0000-0003-4331-941X</orcidid><orcidid>https://orcid.org/0000-0002-8144-4847</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2021-12, Vol.68 (12), p.11847-11857 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_9311816 |
source | IEEE Electronic Library (IEL) |
subjects | Active flux Adaptation models Adaptive control Back electromotive force Compensators Delays Digital signal processors Directional control disturbance observer Disturbance observers Electromotive forces Harmonic analysis interior permanent magnet synchronous motor (IPMSM) Load modeling Microprocessors Permanent magnet motors Permanent magnets Phase locked loops Quadratures Sensorless control Signal processing Sliding mode control speed sensorless control Synchronous motors |
title | A New Frequency Adaptive Second-Order Disturbance Observer for Sensorless Vector Control of Interior Permanent Magnet Synchronous Motor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Frequency%20Adaptive%20Second-Order%20Disturbance%20Observer%20for%20Sensorless%20Vector%20Control%20of%20Interior%20Permanent%20Magnet%20Synchronous%20Motor&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Woldegiorgis,%20Abebe%20Teklu&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=11847&rft.epage=11857&rft.pages=11847-11857&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.3047065&rft_dat=%3Cproquest_RIE%3E2568064153%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568064153&rft_id=info:pmid/&rft_ieee_id=9311816&rfr_iscdi=true |