A New Frequency Adaptive Second-Order Disturbance Observer for Sensorless Vector Control of Interior Permanent Magnet Synchronous Motor
In this article, a new frequency adaptive second-order disturbance observer (FASODO) for back electromotive force (EMF) and active flux estimation is proposed using the active flux model of interior permanent magnet synchronous motors. FASODO is a frequency adaptive approach and eliminates the phase...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2021-12, Vol.68 (12), p.11847-11857 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, a new frequency adaptive second-order disturbance observer (FASODO) for back electromotive force (EMF) and active flux estimation is proposed using the active flux model of interior permanent magnet synchronous motors. FASODO is a frequency adaptive approach and eliminates the phase delay compensator demand of the traditional sliding mode observer-based back EMF estimator. Besides, FASODO estimates the active flux and the back EMF simultaneously. As a result, a quadrature phase-locked loop (Q-PLL) using either the back EMF or the active flux and a tan inverse approach can be used for speed-position identification. Meanwhile, an integrally compensated Q-PLL is designed to overcome the traditional Q-PLL position estimation error during ramp frequency tracking. The design guideline of FASODO and the integrally compensated Q-PLL are provided. A comparative analysis with traditional SMO shows that the proposed approach can deliver a better sensorless control performance. Furthermore, a comparison with a frequency adaptive complex coefficient filter enhanced SMO shows a comparable result, while the proposed approach additionally delivers the active flux. The approach is verified using the Texas Digital Signal Processor (TMS320F28335) and RT-LAB Real-Time Simulator, taking into account different operating conditions. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2020.3047065 |