Silicon Based 1 × M Wavelength Selective Switch Using Arrayed Waveguide Gratings With Fold-Back Waveguides
The design of a novel 1 × M fold-back type wavelength selective switch (WSS), which has fewer waveguide crossings than a conventional integrated WSS, is reported. The WSS is composed of interleavers, 1 × M optical switches, and arrayed waveguide gratings (AWGs). Switches are combined with AWGs by...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2021-04, Vol.39 (8), p.2413-2420 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The design of a novel 1 × M fold-back type wavelength selective switch (WSS), which has fewer waveguide crossings than a conventional integrated WSS, is reported. The WSS is composed of interleavers, 1 × M optical switches, and arrayed waveguide gratings (AWGs). Switches are combined with AWGs by fold-back waveguides, and each AWG works as both a demultiplexer and multiplexer thus avoiding center wavelength mismatch caused by fabrication errors. Waveguide crossings cause excess crosstalk and loss in lightwave circuits. By using a fold-back architecture the number of crossings can be reduced to less than half that of a conventional design. We discuss the operating principle, the design method, and the scalability of the fold-back type WSS. Furthermore, the switching operation of a 200-GHz spacing, 20-channel, 1 × 2 silicon WSS in a fold-back configuration on a 5 mm × 10 mm SOI chip is demonstrated. This has 15 waveguide crossings in a path, of which six are additional crossings with monitor waveguides. The average insertion loss and average extinction ratio are 29.6 dB and 10.9 dB, respectively. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2020.3048585 |