Room Acoustical Parameter Estimation From Room Impulse Responses Using Deep Neural Networks

We describe a new method to estimate the geometry of a room and reflection coefficients given room impulse responses. The method utilizes convolutional neural networks to estimate the room geometry and multilayer perceptrons to estimate the reflection coefficients. The mean square error is used as t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2021, Vol.29, p.436-447
Hauptverfasser: Yu, Wangyang, Kleijn, W. Bastiaan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a new method to estimate the geometry of a room and reflection coefficients given room impulse responses. The method utilizes convolutional neural networks to estimate the room geometry and multilayer perceptrons to estimate the reflection coefficients. The mean square error is used as the loss function. In contrast to existing methods, we do not require the knowledge of the relative positions of sources and receivers in the room. The method can be used with only a single RIR between one source and one receiver. For simulated environments, the proposed estimation method can achieve an average of 0.04 m accuracy for each dimension in room geometry estimation and 0.09 accuracy in reflection coefficients. For real-world environments, the room geometry estimation method achieves an accuracy of an average of 0.065 m for each dimension.
ISSN:2329-9290
2329-9304
DOI:10.1109/TASLP.2020.3043115