Modeling and Abstraction of Network and Environment States Using Deep Learning

CANs promise to apply cognition to overcome shortcomings of self-organizing networks, such as limited flexibility and adaptability to changing environments. in CAN, machine-learning-based network automation functions, called CFs, learn context-specific policies for automating network operations. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2020-11, Vol.34 (6), p.8-13
Hauptverfasser: Mwanje, Stephen S., Kajo, Marton, Ali-Tolppa, Janne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CANs promise to apply cognition to overcome shortcomings of self-organizing networks, such as limited flexibility and adaptability to changing environments. in CAN, machine-learning-based network automation functions, called CFs, learn context-specific policies for automating network operations. For this, CFs need a common abstract description of the network states to which they respond. This article presents a design and implementation of an EMA engine that could be tasked with learning the required abstract states in a consistent way across multiple CFs.
ISSN:0890-8044
1558-156X
DOI:10.1109/MNET.001.2000031