Chaos-Based Space-Time Trellis Codes With Deep Learning Decoding

In this brief we propose a space-time trellis code scheme based on three-dimensional chaotic attractors. The chaotic trajectories are represented by the symbolic dynamics generated by a labeled Poincaré section and are transmitted by multiple antennas, defining a chaos-based space-time trellis code...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-04, Vol.68 (4), p.1472-1476
Hauptverfasser: Souza, Carlos E. C., Campello, Rafael, Pimentel, Cecilio, Chaves, Daniel P. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this brief we propose a space-time trellis code scheme based on three-dimensional chaotic attractors. The chaotic trajectories are represented by the symbolic dynamics generated by a labeled Poincaré section and are transmitted by multiple antennas, defining a chaos-based space-time trellis code (CB-STTC). This code is defined by a finite state encoder that maps information sequences to restricted sequences satisfying the dynamics of the attactor. We also propose a neural network architecture capable of learning how to decode the CB-STTC. Finally, the frame error rate of the proposed CB-STTC is analyzed with maximum likelihood and neural network decoding.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2020.3038481