Decentralized Ride-Sharing and Vehicle-Pooling Based on Fair Cost-Sharing Mechanisms
Ride-sharing or vehicle-pooling allows commuters to team up spontaneously for transportation cost sharing. This has become a popular trend in the emerging paradigm of sharing economy. One crucial component to support effective ride-sharing is the matching mechanism that pairs up suitable commuters....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-03, Vol.23 (3), p.1936-1946 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ride-sharing or vehicle-pooling allows commuters to team up spontaneously for transportation cost sharing. This has become a popular trend in the emerging paradigm of sharing economy. One crucial component to support effective ride-sharing is the matching mechanism that pairs up suitable commuters. Traditionally, matching has been performed in a centralized manner, whereby an operator arranges ride-sharing according to a global objective (e.g., total cost of all commuters). However, ride-sharing is a decentralized decision-making paradigm, where commuters are self-interested and only motivated to team up based on individual payments. Particularly, it is not clear how transportation cost should be shared fairly between commuters, and what ramifications of cost-sharing are on decentralized ride-sharing. This paper sheds light on the principles of decentralized ride-sharing and vehicle-pooling mechanisms based on stable matching, such that no one would be better off to deviate from a stable matching outcome. We study various fair cost-sharing mechanisms and the induced stable matching outcomes. We compare the stable matching outcomes with a social optimal outcome (that minimizes total cost) by theoretical bounds of social optimality ratios, and show that several fair cost-sharing mechanisms can achieve high social optimality. We also corroborate our results with an empirical study of taxi sharing under fair cost-sharing mechanisms by a data analysis on New York City taxi trip dataset, and provide useful insights on effective decentralized mechanisms for practical ride-sharing and vehicle-pooling. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2020.3030051 |