Joint Inversion of Audio-Magnetotelluric and Seismic Travel Time Data With Deep Learning Constraint

Deep learning is applied to assist the joint inversion for audio-magnetotelluric and seismic travel time data. More specifically, deep residual convolutional neural networks (DRCNNs) are designed to learn both structural similarity and resistivity-velocity relationships according to prior knowledge....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2021-09, Vol.59 (9), p.7982-7995
Hauptverfasser: Guo, Rui, Yao, He Ming, Li, Maokun, Ng, Michael Kwok Po, Jiang, Lijun, Abubakar, Aria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep learning is applied to assist the joint inversion for audio-magnetotelluric and seismic travel time data. More specifically, deep residual convolutional neural networks (DRCNNs) are designed to learn both structural similarity and resistivity-velocity relationships according to prior knowledge. During the inversion, the unknown resistivity and velocity are updated alternatingly with the Gauss-Newton method, based on the reference model generated by the trained DRCNNs. The workflow of this joint inversion scheme and the design of the DRCNNs are explained in detail. Compared with describing the resistivity-velocity relationship using empirical equations, this method can avoid the necessity in modeling the correlations in rigorous mathematical forms and extract more hidden prior information embedded in the training set, meanwhile preserving the structural similarity between different inverted models. Numerical tests show that the inverted resistivity and velocity have similar profiles, and their relationship can be kept consistent with the prior joint distribution. Furthermore, the convergence is faster, and final data misfits can be lower than separate inversion.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2020.3032743