Hierarchical Transformer Encoder With Structured Representation for Abstract Reasoning

Abstract reasoning is one of the defining characteristics of human intelligence and can be estimated by visual IQ tests such as Raven's Progressive Matrices. In this paper, we propose using a hierarchical Transformer encoder with structured representation that employs a novel neural network arc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.200229-200236
Hauptverfasser: An, Jinwon, Cho, Sungzoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract reasoning is one of the defining characteristics of human intelligence and can be estimated by visual IQ tests such as Raven's Progressive Matrices. In this paper, we propose using a hierarchical Transformer encoder with structured representation that employs a novel neural network architecture to improve both perception and reasoning in a visual IQ test. For perception, we used object detection models to extract the structured features. For reasoning, we used the Transformer encoder in a hierarchical manner that fits the structure of Raven's Progressive Matrices. Experimental results on the RAVEN dataset, which is one of the major large-scale datasets on Raven's Progressive Matrices, showed that our proposed architecture achieved an overall accuracy of 99.62%, which is an improvement of more than 8% points over CoPINet, the present-day, state-of-the-art neural network model.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3035463