Analysis of the Reliability of LoRa

This letter studies the performance of a single gateway LoRa system in the presence of different interference considering the imperfect orthogonality effect. It utilizes concepts of stochastic geometry to present a low-complexity approximate closed-form model for computing the success and coverage p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2021-03, Vol.25 (3), p.1037-1040
1. Verfasser: Qadir, Qahhar Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter studies the performance of a single gateway LoRa system in the presence of different interference considering the imperfect orthogonality effect. It utilizes concepts of stochastic geometry to present a low-complexity approximate closed-form model for computing the success and coverage probabilities under these challenging conditions. Monte Carlo simulation results have shown that LoRa is not as theoretically described as a technology that can cover few to ten kilometers. It was found that in the presence of the combination of signal-to-noise ratio (SNR) and imperfect orthogonality between spreading factors (SF), the performance degrades dramatically beyond a couple of kilometers. However, better performance is observed when perfect orthogonality is considered and SNR is not included. Furthermore, the performance is annulus dependent and slightly improves at the border of the deployment cell annuli. Finally, the coverage probability declines exponentially as the average number of end devices grows.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2020.3034865