Multimodal Representation Learning and Set Attention for LWIR In-Scene Atmospheric Compensation
A multimodal generative modeling approach combined with permutation-invariant set attention is investigated in this article to support long-wave infrared (LWIR) in-scene atmospheric compensation. The generative model can produce realistic atmospheric state vectors (T, H 2 O, O 3 ) and their correspo...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.127-140 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A multimodal generative modeling approach combined with permutation-invariant set attention is investigated in this article to support long-wave infrared (LWIR) in-scene atmospheric compensation. The generative model can produce realistic atmospheric state vectors (T, H 2 O, O 3 ) and their corresponding transmittance, upwelling radiance, and downwelling radiance (TUD) vectors by sampling a low-dimensional space. Variational loss, LWIR radiative transfer loss, and atmospheric state loss constrain the low-dimensional space, resulting in lower reconstruction error compared to standard mean-squared error approaches. A permutation-invariant network predicts the generative model low-dimensional components from in-scene data, allowing for simultaneous estimates of the atmospheric state and TUD vector. Forward modeling the predicted atmospheric state vector results in a second atmospheric compensation estimate. Results are reported for collected LWIR data and compared against fast line-of-sight atmospheric analysis of hypercubes-infrared (FLAASHIR), demonstrating commensurate performance when applied to a target detection scenario. Additionally, an approximate eight times reduction in detection time is realized using this neural network-based algorithm compared to FLAASH-IR. Accelerating the target detection pipeline while providing multiple atmospheric estimates is necessary for many real world, time sensitive tasks. |
---|---|
ISSN: | 1939-1404 2151-1535 |
DOI: | 10.1109/JSTARS.2020.3034421 |