Estimating Affective Taste Experience Using Combined Implicit Behavioral and Neurophysiological Measures

We trained a model to distinguish an extreme high arousal, unpleasant drink from regular drinks based on a range of implicit behavioral and physiological responses to naturalistic tasting. The trained model predicted arousal ratings of regular drinks, highlighting the possibility to estimate affecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2023-01, Vol.14 (1), p.849-856
Hauptverfasser: Brouwer, A.-M., van den Broek, T. J., Hogervorst, M. A., Kaneko, D., Toet, A., Kallen, V., van Erp, J. B. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We trained a model to distinguish an extreme high arousal, unpleasant drink from regular drinks based on a range of implicit behavioral and physiological responses to naturalistic tasting. The trained model predicted arousal ratings of regular drinks, highlighting the possibility to estimate affective experience without having to rely on subjective ratings.
ISSN:1949-3045
1949-3045
DOI:10.1109/TAFFC.2020.3032236