Estimating Affective Taste Experience Using Combined Implicit Behavioral and Neurophysiological Measures
We trained a model to distinguish an extreme high arousal, unpleasant drink from regular drinks based on a range of implicit behavioral and physiological responses to naturalistic tasting. The trained model predicted arousal ratings of regular drinks, highlighting the possibility to estimate affecti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on affective computing 2023-01, Vol.14 (1), p.849-856 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We trained a model to distinguish an extreme high arousal, unpleasant drink from regular drinks based on a range of implicit behavioral and physiological responses to naturalistic tasting. The trained model predicted arousal ratings of regular drinks, highlighting the possibility to estimate affective experience without having to rely on subjective ratings. |
---|---|
ISSN: | 1949-3045 1949-3045 |
DOI: | 10.1109/TAFFC.2020.3032236 |