3-D Poststack Seismic Data Compression With a Deep Autoencoder

We approach the problem of 3-D poststack seismic data compression by training a model based on a deep autoencoder. Our network architecture is trained to consider the similarity between 3-D seismic sections drawn from one or multiple seismic volumes. A whole seismic volume is compressed with the lat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Schiavon, Ana Paula, Ribeiro, Kevyn, Navarro, Joao Paulo, Vieira, Marcelo Bernardes, Silva, Pedro Mario Cruz e
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We approach the problem of 3-D poststack seismic data compression by training a model based on a deep autoencoder. Our network architecture is trained to consider the similarity between 3-D seismic sections drawn from one or multiple seismic volumes. A whole seismic volume is compressed with the latent representations of each of its composing volumetric sections. The goal is to compress the seismic data at very low bit rates with high-quality reconstruction. Our model is suitable for training general compressors from multiple seismic surveys or for specialized compression of a single seismic volume. Results show that our method can compress seismic data with extremely low bit rates, below 0.3 bits-per-voxel (bpv) while yielding peak signal-to-noise ratio (PSNR) values over 40 dB.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2020.3028023