High-Scalability CMOS Quantum Magnetometer With Spin-State Excitation and Detection of Diamond Color Centers
Magnetometers based on quantum mechanical processes enable high sensitivity and long-term stability without the need for re-calibration, but their integration into fieldable devices remains challenging. This article presents a CMOS quantum vector-field magnetometer that miniaturizes the conventional...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2021-03, Vol.56 (3), p.1001-1014 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1014 |
---|---|
container_issue | 3 |
container_start_page | 1001 |
container_title | IEEE journal of solid-state circuits |
container_volume | 56 |
creator | Ibrahim, Mohamed I. Foy, Christopher Englund, Dirk R. Han, Ruonan |
description | Magnetometers based on quantum mechanical processes enable high sensitivity and long-term stability without the need for re-calibration, but their integration into fieldable devices remains challenging. This article presents a CMOS quantum vector-field magnetometer that miniaturizes the conventional quantum sensing platforms using nitrogen-vacancy (NV) centers in diamond. By integrating key components for spin control and readout, the chip performs magnetometry through optically detected magnetic resonance (ODMR) through a diamond slab attached to a custom CMOS chip. The ODMR control is highly uniform across the NV centers in the diamond, which is enabled by a CMOS-generated ~2.87 GHz magnetic field with |
doi_str_mv | 10.1109/JSSC.2020.3027056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9219117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9219117</ieee_id><sourcerecordid>2493595584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-96e3d77341f3c7734b9b6598f3768a82af14319dbb1f6054da71ef35bc42816b3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZ26R_8ijddMrGkCr6FtI22TK6ZrYpuG9v6oZP597LOefCD6FbIBMAwh9e8zybhCQkE0rChETxGRpBFKUBJPTrHI0IgTTgISGX6Krrtn5lLIURqudmvQnyUtayMLVxB5wtVzl-62Xj-h1eynWjnN0pp1r8adwG53vTBLmTTuHZT2n8YGyDZVPhqTeVf5vVeGrkzvpjZmvb4kw1vqC7Rhda1p26OekYfTzN3rN5sFg9v2SPi6CkNHYBjxWtkoQy0LQctOBFHPFU0yROZRpKDYwCr4oCdEwiVskElKZRUbIwhbigY3R_7N239rtXnRNb27eNfylCxmnEPRjmXXB0la3tulZpsW_NTrYHAUQMUMUAVQxQxQmqz9wdM0Yp9e_nIXDwoH8BSedykw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493595584</pqid></control><display><type>article</type><title>High-Scalability CMOS Quantum Magnetometer With Spin-State Excitation and Detection of Diamond Color Centers</title><source>IEEE Electronic Library (IEL)</source><creator>Ibrahim, Mohamed I. ; Foy, Christopher ; Englund, Dirk R. ; Han, Ruonan</creator><creatorcontrib>Ibrahim, Mohamed I. ; Foy, Christopher ; Englund, Dirk R. ; Han, Ruonan</creatorcontrib><description>Magnetometers based on quantum mechanical processes enable high sensitivity and long-term stability without the need for re-calibration, but their integration into fieldable devices remains challenging. This article presents a CMOS quantum vector-field magnetometer that miniaturizes the conventional quantum sensing platforms using nitrogen-vacancy (NV) centers in diamond. By integrating key components for spin control and readout, the chip performs magnetometry through optically detected magnetic resonance (ODMR) through a diamond slab attached to a custom CMOS chip. The ODMR control is highly uniform across the NV centers in the diamond, which is enabled by a CMOS-generated ~2.87 GHz magnetic field with <; 5% inhomogeneity across a large-area current-driven wire array. The magnetometer chip is 1.5 mm 2 in size, prototyped in 65-nm bulk CMOS technology, and attached to a 300 × 80 μ m 2 diamond slab. NV fluorescence is measured by CMOS-integrated photodetectors. This ON-chip measurement is enabled by efficient rejection of the green pump light from the red fluorescence through a CMOS-integrated spectral filter based on a combination of spectrally dependent plasmonic losses and diffractive filtering in the CMOS back-end-of-line (BEOL). This filter achieves a measured ~25 dB of green light rejection. We measure a sensitivity of 245 nT/Hz 1/2 , marking a 130 × improvement over a previous CMOS-NV sensor prototype, largely thanks to the better spectral filtering and homogeneous microwave generation over larger area.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2020.3027056</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; Color centers ; Diamond ; Diamonds ; field homogeneity ; Magnetic measurement ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic separation ; Magnetometers ; magnetometry ; nanophotonic filter ; nitrogen-vacancy (NV) centers ; Prototypes ; quantum ; Quantum mechanics ; Sensitivity ; Superconducting magnets ; Zeeman</subject><ispartof>IEEE journal of solid-state circuits, 2021-03, Vol.56 (3), p.1001-1014</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-96e3d77341f3c7734b9b6598f3768a82af14319dbb1f6054da71ef35bc42816b3</citedby><cites>FETCH-LOGICAL-c336t-96e3d77341f3c7734b9b6598f3768a82af14319dbb1f6054da71ef35bc42816b3</cites><orcidid>0000-0003-3084-5533 ; 0000-0002-6289-7832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9219117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9219117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ibrahim, Mohamed I.</creatorcontrib><creatorcontrib>Foy, Christopher</creatorcontrib><creatorcontrib>Englund, Dirk R.</creatorcontrib><creatorcontrib>Han, Ruonan</creatorcontrib><title>High-Scalability CMOS Quantum Magnetometer With Spin-State Excitation and Detection of Diamond Color Centers</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Magnetometers based on quantum mechanical processes enable high sensitivity and long-term stability without the need for re-calibration, but their integration into fieldable devices remains challenging. This article presents a CMOS quantum vector-field magnetometer that miniaturizes the conventional quantum sensing platforms using nitrogen-vacancy (NV) centers in diamond. By integrating key components for spin control and readout, the chip performs magnetometry through optically detected magnetic resonance (ODMR) through a diamond slab attached to a custom CMOS chip. The ODMR control is highly uniform across the NV centers in the diamond, which is enabled by a CMOS-generated ~2.87 GHz magnetic field with <; 5% inhomogeneity across a large-area current-driven wire array. The magnetometer chip is 1.5 mm 2 in size, prototyped in 65-nm bulk CMOS technology, and attached to a 300 × 80 μ m 2 diamond slab. NV fluorescence is measured by CMOS-integrated photodetectors. This ON-chip measurement is enabled by efficient rejection of the green pump light from the red fluorescence through a CMOS-integrated spectral filter based on a combination of spectrally dependent plasmonic losses and diffractive filtering in the CMOS back-end-of-line (BEOL). This filter achieves a measured ~25 dB of green light rejection. We measure a sensitivity of 245 nT/Hz 1/2 , marking a 130 × improvement over a previous CMOS-NV sensor prototype, largely thanks to the better spectral filtering and homogeneous microwave generation over larger area.</description><subject>CMOS</subject><subject>Color centers</subject><subject>Diamond</subject><subject>Diamonds</subject><subject>field homogeneity</subject><subject>Magnetic measurement</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic separation</subject><subject>Magnetometers</subject><subject>magnetometry</subject><subject>nanophotonic filter</subject><subject>nitrogen-vacancy (NV) centers</subject><subject>Prototypes</subject><subject>quantum</subject><subject>Quantum mechanics</subject><subject>Sensitivity</subject><subject>Superconducting magnets</subject><subject>Zeeman</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZ26R_8ijddMrGkCr6FtI22TK6ZrYpuG9v6oZP597LOefCD6FbIBMAwh9e8zybhCQkE0rChETxGRpBFKUBJPTrHI0IgTTgISGX6Krrtn5lLIURqudmvQnyUtayMLVxB5wtVzl-62Xj-h1eynWjnN0pp1r8adwG53vTBLmTTuHZT2n8YGyDZVPhqTeVf5vVeGrkzvpjZmvb4kw1vqC7Rhda1p26OekYfTzN3rN5sFg9v2SPi6CkNHYBjxWtkoQy0LQctOBFHPFU0yROZRpKDYwCr4oCdEwiVskElKZRUbIwhbigY3R_7N239rtXnRNb27eNfylCxmnEPRjmXXB0la3tulZpsW_NTrYHAUQMUMUAVQxQxQmqz9wdM0Yp9e_nIXDwoH8BSedykw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ibrahim, Mohamed I.</creator><creator>Foy, Christopher</creator><creator>Englund, Dirk R.</creator><creator>Han, Ruonan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3084-5533</orcidid><orcidid>https://orcid.org/0000-0002-6289-7832</orcidid></search><sort><creationdate>20210301</creationdate><title>High-Scalability CMOS Quantum Magnetometer With Spin-State Excitation and Detection of Diamond Color Centers</title><author>Ibrahim, Mohamed I. ; Foy, Christopher ; Englund, Dirk R. ; Han, Ruonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-96e3d77341f3c7734b9b6598f3768a82af14319dbb1f6054da71ef35bc42816b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CMOS</topic><topic>Color centers</topic><topic>Diamond</topic><topic>Diamonds</topic><topic>field homogeneity</topic><topic>Magnetic measurement</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic separation</topic><topic>Magnetometers</topic><topic>magnetometry</topic><topic>nanophotonic filter</topic><topic>nitrogen-vacancy (NV) centers</topic><topic>Prototypes</topic><topic>quantum</topic><topic>Quantum mechanics</topic><topic>Sensitivity</topic><topic>Superconducting magnets</topic><topic>Zeeman</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim, Mohamed I.</creatorcontrib><creatorcontrib>Foy, Christopher</creatorcontrib><creatorcontrib>Englund, Dirk R.</creatorcontrib><creatorcontrib>Han, Ruonan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ibrahim, Mohamed I.</au><au>Foy, Christopher</au><au>Englund, Dirk R.</au><au>Han, Ruonan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Scalability CMOS Quantum Magnetometer With Spin-State Excitation and Detection of Diamond Color Centers</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>56</volume><issue>3</issue><spage>1001</spage><epage>1014</epage><pages>1001-1014</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Magnetometers based on quantum mechanical processes enable high sensitivity and long-term stability without the need for re-calibration, but their integration into fieldable devices remains challenging. This article presents a CMOS quantum vector-field magnetometer that miniaturizes the conventional quantum sensing platforms using nitrogen-vacancy (NV) centers in diamond. By integrating key components for spin control and readout, the chip performs magnetometry through optically detected magnetic resonance (ODMR) through a diamond slab attached to a custom CMOS chip. The ODMR control is highly uniform across the NV centers in the diamond, which is enabled by a CMOS-generated ~2.87 GHz magnetic field with <; 5% inhomogeneity across a large-area current-driven wire array. The magnetometer chip is 1.5 mm 2 in size, prototyped in 65-nm bulk CMOS technology, and attached to a 300 × 80 μ m 2 diamond slab. NV fluorescence is measured by CMOS-integrated photodetectors. This ON-chip measurement is enabled by efficient rejection of the green pump light from the red fluorescence through a CMOS-integrated spectral filter based on a combination of spectrally dependent plasmonic losses and diffractive filtering in the CMOS back-end-of-line (BEOL). This filter achieves a measured ~25 dB of green light rejection. We measure a sensitivity of 245 nT/Hz 1/2 , marking a 130 × improvement over a previous CMOS-NV sensor prototype, largely thanks to the better spectral filtering and homogeneous microwave generation over larger area.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2020.3027056</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3084-5533</orcidid><orcidid>https://orcid.org/0000-0002-6289-7832</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2021-03, Vol.56 (3), p.1001-1014 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_ieee_primary_9219117 |
source | IEEE Electronic Library (IEL) |
subjects | CMOS Color centers Diamond Diamonds field homogeneity Magnetic measurement Magnetic resonance Magnetic resonance imaging Magnetic separation Magnetometers magnetometry nanophotonic filter nitrogen-vacancy (NV) centers Prototypes quantum Quantum mechanics Sensitivity Superconducting magnets Zeeman |
title | High-Scalability CMOS Quantum Magnetometer With Spin-State Excitation and Detection of Diamond Color Centers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Scalability%20CMOS%20Quantum%20Magnetometer%20With%20Spin-State%20Excitation%20and%20Detection%20of%20Diamond%20Color%20Centers&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Ibrahim,%20Mohamed%20I.&rft.date=2021-03-01&rft.volume=56&rft.issue=3&rft.spage=1001&rft.epage=1014&rft.pages=1001-1014&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2020.3027056&rft_dat=%3Cproquest_RIE%3E2493595584%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493595584&rft_id=info:pmid/&rft_ieee_id=9219117&rfr_iscdi=true |