High-Scalability CMOS Quantum Magnetometer With Spin-State Excitation and Detection of Diamond Color Centers
Magnetometers based on quantum mechanical processes enable high sensitivity and long-term stability without the need for re-calibration, but their integration into fieldable devices remains challenging. This article presents a CMOS quantum vector-field magnetometer that miniaturizes the conventional...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2021-03, Vol.56 (3), p.1001-1014 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetometers based on quantum mechanical processes enable high sensitivity and long-term stability without the need for re-calibration, but their integration into fieldable devices remains challenging. This article presents a CMOS quantum vector-field magnetometer that miniaturizes the conventional quantum sensing platforms using nitrogen-vacancy (NV) centers in diamond. By integrating key components for spin control and readout, the chip performs magnetometry through optically detected magnetic resonance (ODMR) through a diamond slab attached to a custom CMOS chip. The ODMR control is highly uniform across the NV centers in the diamond, which is enabled by a CMOS-generated ~2.87 GHz magnetic field with |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2020.3027056 |