Extract Human Mobility Patterns Powered by City Semantic Diagram

With widespread deployment of GPS devices, massive spatiotemporal trajectories became more accessible. This booming trend paved the solid data ground for researchers to discover the regularities or patterns of human mobility. However, there are still three challenges in semantic pattern extraction i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2022-08, Vol.34 (8), p.1-1
Hauptverfasser: Shan, Zhangqing, Sun, Weiwei, Zheng, Baihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With widespread deployment of GPS devices, massive spatiotemporal trajectories became more accessible. This booming trend paved the solid data ground for researchers to discover the regularities or patterns of human mobility. However, there are still three challenges in semantic pattern extraction including semantic absence, semantic bias and semantic complexity. In this paper, we invent and apply a novel data structure namely City Semantic Diagram to overcome above three challenges. First, our approach resolves semantic absence by exactly identifying semantic behaviours from raw trajectories. Second, the delicate design of semantic purification helps us to detect semantic complexity from human mobility. Third, we avoid semantic bias using objective data source such as ubiquitous GPS trajectories. Comprehensive and massive experiments have been conducted based on real taxi trajectories and points of interest in Shanghai. Compared with existing approaches, City Semantic Diagram shows its satisfied effectiveness and precision to discover fine-grained semantic patterns.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2020.3026235