Impact of Star Connection Layouts on the Control of Multiphase Induction Motor Drives Under Open-Phase Fault

This article presents a postfault control algorithm that minimizes the stator Joule losses in multiphase induction machines under an open-phase fault and for different star connection layouts. The key novelty is that the algorithm can be applied to any configuration of a multi- n -phase machine, ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2021-04, Vol.36 (4), p.3717-3726
Hauptverfasser: Sala, Giacomo, Mengoni, Michele, Rizzoli, Gabriele, Degano, Michele, Zarri, Luca, Tani, Angelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a postfault control algorithm that minimizes the stator Joule losses in multiphase induction machines under an open-phase fault and for different star connection layouts. The key novelty is that the algorithm can be applied to any configuration of a multi- n -phase machine, independently of the connection of the neutral points. The latter is analytically derived and is based on the space vector representation of the machine model. In addition, it is shown that a low number of neutral points helps to reduce the winding losses in case of an open-phase fault but requires additional control regulators and computational efforts. The theory is applied to an asymmetrical quadruple-three-phase induction machine, which is configured to represent five different motor layouts. Finally, experimental results are presented to validate the control algorithm. The optimal solution that is given in this article can be employed for the control of symmetrical or asymmetrical multiphase machines with different star connection layouts and in any open-phase postfault operation.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2020.3024205