Reversal of Rényi Entropy Inequalities Under Log-Concavity
We establish a discrete analog of the Rényi entropy comparison due to Bobkov and Madiman. For log-concave variables on the integers, the min entropy is within \log e of the usual Shannon entropy. Additionally we investigate the entropic Rogers-Shephard inequality studied by Madiman and Kontoyannis...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2021-01, Vol.67 (1), p.45-51 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a discrete analog of the Rényi entropy comparison due to Bobkov and Madiman. For log-concave variables on the integers, the min entropy is within \log e of the usual Shannon entropy. Additionally we investigate the entropic Rogers-Shephard inequality studied by Madiman and Kontoyannis, and establish a sharp Rényi version for certain parameters in both the continuous and discrete cases. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2020.3024025 |