A hierarchical cluster algorithm for dynamic, centralized timestamps

Partial-order data structures used in distributed-system observation tools typically use vector timestamps to efficiently determine event precedence. Unfortunately all current dynamic vector-timestamp algorithms either require a vector of size equal to the number of processes in the computation or r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ward, P.A.S., Taylor, D.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Partial-order data structures used in distributed-system observation tools typically use vector timestamps to efficiently determine event precedence. Unfortunately all current dynamic vector-timestamp algorithms either require a vector of size equal to the number of processes in the computation or require a graph search operation to determine event precedence. This fundamentally limits the scalability of such observation systems. In this paper we present an algorithm for hierarchical, clustered vector time-stamps. We present results for a variety of computation environments that demonstrate such timestamps can reduce space consumption by more than an order-of-magnitude over Fidge/Mattern timestamps while still providing acceptable time bounds for computing timestamps and determining event precedence.
DOI:10.1109/ICDSC.2001.918989