Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems
Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its loca...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2021, Vol.16, p.671-684 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | |
container_start_page | 671 |
container_title | IEEE transactions on information forensics and security |
container_volume | 16 |
creator | Wang, Chong Xiao Song, Yang Tay, Wee Peng |
description | Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We investigate the utility-privacy tradeoff in terms of the Cramér-Rao lower bounds for estimating the public and private parameters. We study the class of privacy mechanisms given by linear compression and noise perturbation, and derive necessary and sufficient conditions for achieving arbitrarily strong utility-privacy tradeoff in a multi-agent system for both the cases where prior information is available and unavailable, respectively. We also provide a method to find the maximum estimation privacy achievable without compromising the utility and propose an alternating algorithm to optimize the utility-privacy tradeoff in the case where arbitrarily strong utility-privacy tradeoff is not achievable. |
doi_str_mv | 10.1109/TIFS.2020.3016835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9167255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9167255</ieee_id><sourcerecordid>2447562048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-68093e2b07ad12cee4ee1f68d50d699e678ef7ac584fae97f413aba729f4ecc53</originalsourceid><addsrcrecordid>eNo9kE1rAjEURUNpodb2B5RuBroem--ZLK3UVrC0oK5DzLxIZJyxSSzMv3dEcfXu4tz74CD0TPCIEKzelrPpYkQxxSOGiSyZuEEDIoTMJabk9poJu0cPMW4x5rzHBuh9HNY-BRN83WWLFNpmk62Sr33q8t_g_43tsmUwFbTOZb7Jvg918vl4A03KFl1MsIuP6M6ZOsLT5Q7RavqxnHzl85_P2WQ8zy1jMuWyxIoBXePCVIRaAA5AnCwrgSupFMiiBFcYK0ruDKjCccLM2hRUOQ7WCjZEr-fdfWj_DhCT3raH0PQvNeW8EJJiXvYUOVM2tDEGcHof_M6EThOsT6r0SZU-qdIXVX3n5dzxAHDlFZEFFYIdAQceZTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447562048</pqid></control><display><type>article</type><title>Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Chong Xiao ; Song, Yang ; Tay, Wee Peng</creator><creatorcontrib>Wang, Chong Xiao ; Song, Yang ; Tay, Wee Peng</creatorcontrib><description>Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We investigate the utility-privacy tradeoff in terms of the Cramér-Rao lower bounds for estimating the public and private parameters. We study the class of privacy mechanisms given by linear compression and noise perturbation, and derive necessary and sufficient conditions for achieving arbitrarily strong utility-privacy tradeoff in a multi-agent system for both the cases where prior information is available and unavailable, respectively. We also provide a method to find the maximum estimation privacy achievable without compromising the utility and propose an alternating algorithm to optimize the utility-privacy tradeoff in the case where arbitrarily strong utility-privacy tradeoff is not achievable.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2020.3016835</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cramér-Rao lower bound ; Data privacy ; Estimation ; Inference privacy ; linear estimation ; Lower bounds ; multi-agent network ; Multi-agent systems ; Multiagent systems ; Noise measurement ; Parameter estimation ; Perturbation ; Perturbation methods ; Privacy ; Tradeoffs</subject><ispartof>IEEE transactions on information forensics and security, 2021, Vol.16, p.671-684</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-68093e2b07ad12cee4ee1f68d50d699e678ef7ac584fae97f413aba729f4ecc53</citedby><cites>FETCH-LOGICAL-c336t-68093e2b07ad12cee4ee1f68d50d699e678ef7ac584fae97f413aba729f4ecc53</cites><orcidid>0000-0001-9236-4538 ; 0000-0002-1543-195X ; 0000-0002-0699-7329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9167255$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9167255$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Chong Xiao</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Tay, Wee Peng</creatorcontrib><title>Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We investigate the utility-privacy tradeoff in terms of the Cramér-Rao lower bounds for estimating the public and private parameters. We study the class of privacy mechanisms given by linear compression and noise perturbation, and derive necessary and sufficient conditions for achieving arbitrarily strong utility-privacy tradeoff in a multi-agent system for both the cases where prior information is available and unavailable, respectively. We also provide a method to find the maximum estimation privacy achievable without compromising the utility and propose an alternating algorithm to optimize the utility-privacy tradeoff in the case where arbitrarily strong utility-privacy tradeoff is not achievable.</description><subject>Algorithms</subject><subject>Cramér-Rao lower bound</subject><subject>Data privacy</subject><subject>Estimation</subject><subject>Inference privacy</subject><subject>linear estimation</subject><subject>Lower bounds</subject><subject>multi-agent network</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Noise measurement</subject><subject>Parameter estimation</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Privacy</subject><subject>Tradeoffs</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rAjEURUNpodb2B5RuBroem--ZLK3UVrC0oK5DzLxIZJyxSSzMv3dEcfXu4tz74CD0TPCIEKzelrPpYkQxxSOGiSyZuEEDIoTMJabk9poJu0cPMW4x5rzHBuh9HNY-BRN83WWLFNpmk62Sr33q8t_g_43tsmUwFbTOZb7Jvg918vl4A03KFl1MsIuP6M6ZOsLT5Q7RavqxnHzl85_P2WQ8zy1jMuWyxIoBXePCVIRaAA5AnCwrgSupFMiiBFcYK0ruDKjCccLM2hRUOQ7WCjZEr-fdfWj_DhCT3raH0PQvNeW8EJJiXvYUOVM2tDEGcHof_M6EThOsT6r0SZU-qdIXVX3n5dzxAHDlFZEFFYIdAQceZTY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Chong Xiao</creator><creator>Song, Yang</creator><creator>Tay, Wee Peng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9236-4538</orcidid><orcidid>https://orcid.org/0000-0002-1543-195X</orcidid><orcidid>https://orcid.org/0000-0002-0699-7329</orcidid></search><sort><creationdate>2021</creationdate><title>Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems</title><author>Wang, Chong Xiao ; Song, Yang ; Tay, Wee Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-68093e2b07ad12cee4ee1f68d50d699e678ef7ac584fae97f413aba729f4ecc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cramér-Rao lower bound</topic><topic>Data privacy</topic><topic>Estimation</topic><topic>Inference privacy</topic><topic>linear estimation</topic><topic>Lower bounds</topic><topic>multi-agent network</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Noise measurement</topic><topic>Parameter estimation</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Privacy</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chong Xiao</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Tay, Wee Peng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Chong Xiao</au><au>Song, Yang</au><au>Tay, Wee Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2021</date><risdate>2021</risdate><volume>16</volume><spage>671</spage><epage>684</epage><pages>671-684</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We investigate the utility-privacy tradeoff in terms of the Cramér-Rao lower bounds for estimating the public and private parameters. We study the class of privacy mechanisms given by linear compression and noise perturbation, and derive necessary and sufficient conditions for achieving arbitrarily strong utility-privacy tradeoff in a multi-agent system for both the cases where prior information is available and unavailable, respectively. We also provide a method to find the maximum estimation privacy achievable without compromising the utility and propose an alternating algorithm to optimize the utility-privacy tradeoff in the case where arbitrarily strong utility-privacy tradeoff is not achievable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2020.3016835</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9236-4538</orcidid><orcidid>https://orcid.org/0000-0002-1543-195X</orcidid><orcidid>https://orcid.org/0000-0002-0699-7329</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2021, Vol.16, p.671-684 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_ieee_primary_9167255 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cramér-Rao lower bound Data privacy Estimation Inference privacy linear estimation Lower bounds multi-agent network Multi-agent systems Multiagent systems Noise measurement Parameter estimation Perturbation Perturbation methods Privacy Tradeoffs |
title | Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arbitrarily%20Strong%20Utility-Privacy%20Tradeoff%20in%20Multi-Agent%20Systems&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Wang,%20Chong%20Xiao&rft.date=2021&rft.volume=16&rft.spage=671&rft.epage=684&rft.pages=671-684&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2020.3016835&rft_dat=%3Cproquest_RIE%3E2447562048%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447562048&rft_id=info:pmid/&rft_ieee_id=9167255&rfr_iscdi=true |