Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems

Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its loca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2021, Vol.16, p.671-684
Hauptverfasser: Wang, Chong Xiao, Song, Yang, Tay, Wee Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue
container_start_page 671
container_title IEEE transactions on information forensics and security
container_volume 16
creator Wang, Chong Xiao
Song, Yang
Tay, Wee Peng
description Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We investigate the utility-privacy tradeoff in terms of the Cramér-Rao lower bounds for estimating the public and private parameters. We study the class of privacy mechanisms given by linear compression and noise perturbation, and derive necessary and sufficient conditions for achieving arbitrarily strong utility-privacy tradeoff in a multi-agent system for both the cases where prior information is available and unavailable, respectively. We also provide a method to find the maximum estimation privacy achievable without compromising the utility and propose an alternating algorithm to optimize the utility-privacy tradeoff in the case where arbitrarily strong utility-privacy tradeoff is not achievable.
doi_str_mv 10.1109/TIFS.2020.3016835
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9167255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9167255</ieee_id><sourcerecordid>2447562048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-68093e2b07ad12cee4ee1f68d50d699e678ef7ac584fae97f413aba729f4ecc53</originalsourceid><addsrcrecordid>eNo9kE1rAjEURUNpodb2B5RuBroem--ZLK3UVrC0oK5DzLxIZJyxSSzMv3dEcfXu4tz74CD0TPCIEKzelrPpYkQxxSOGiSyZuEEDIoTMJabk9poJu0cPMW4x5rzHBuh9HNY-BRN83WWLFNpmk62Sr33q8t_g_43tsmUwFbTOZb7Jvg918vl4A03KFl1MsIuP6M6ZOsLT5Q7RavqxnHzl85_P2WQ8zy1jMuWyxIoBXePCVIRaAA5AnCwrgSupFMiiBFcYK0ruDKjCccLM2hRUOQ7WCjZEr-fdfWj_DhCT3raH0PQvNeW8EJJiXvYUOVM2tDEGcHof_M6EThOsT6r0SZU-qdIXVX3n5dzxAHDlFZEFFYIdAQceZTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447562048</pqid></control><display><type>article</type><title>Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Chong Xiao ; Song, Yang ; Tay, Wee Peng</creator><creatorcontrib>Wang, Chong Xiao ; Song, Yang ; Tay, Wee Peng</creatorcontrib><description>Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We investigate the utility-privacy tradeoff in terms of the Cramér-Rao lower bounds for estimating the public and private parameters. We study the class of privacy mechanisms given by linear compression and noise perturbation, and derive necessary and sufficient conditions for achieving arbitrarily strong utility-privacy tradeoff in a multi-agent system for both the cases where prior information is available and unavailable, respectively. We also provide a method to find the maximum estimation privacy achievable without compromising the utility and propose an alternating algorithm to optimize the utility-privacy tradeoff in the case where arbitrarily strong utility-privacy tradeoff is not achievable.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2020.3016835</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cramér-Rao lower bound ; Data privacy ; Estimation ; Inference privacy ; linear estimation ; Lower bounds ; multi-agent network ; Multi-agent systems ; Multiagent systems ; Noise measurement ; Parameter estimation ; Perturbation ; Perturbation methods ; Privacy ; Tradeoffs</subject><ispartof>IEEE transactions on information forensics and security, 2021, Vol.16, p.671-684</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-68093e2b07ad12cee4ee1f68d50d699e678ef7ac584fae97f413aba729f4ecc53</citedby><cites>FETCH-LOGICAL-c336t-68093e2b07ad12cee4ee1f68d50d699e678ef7ac584fae97f413aba729f4ecc53</cites><orcidid>0000-0001-9236-4538 ; 0000-0002-1543-195X ; 0000-0002-0699-7329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9167255$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9167255$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Chong Xiao</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Tay, Wee Peng</creatorcontrib><title>Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We investigate the utility-privacy tradeoff in terms of the Cramér-Rao lower bounds for estimating the public and private parameters. We study the class of privacy mechanisms given by linear compression and noise perturbation, and derive necessary and sufficient conditions for achieving arbitrarily strong utility-privacy tradeoff in a multi-agent system for both the cases where prior information is available and unavailable, respectively. We also provide a method to find the maximum estimation privacy achievable without compromising the utility and propose an alternating algorithm to optimize the utility-privacy tradeoff in the case where arbitrarily strong utility-privacy tradeoff is not achievable.</description><subject>Algorithms</subject><subject>Cramér-Rao lower bound</subject><subject>Data privacy</subject><subject>Estimation</subject><subject>Inference privacy</subject><subject>linear estimation</subject><subject>Lower bounds</subject><subject>multi-agent network</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Noise measurement</subject><subject>Parameter estimation</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Privacy</subject><subject>Tradeoffs</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rAjEURUNpodb2B5RuBroem--ZLK3UVrC0oK5DzLxIZJyxSSzMv3dEcfXu4tz74CD0TPCIEKzelrPpYkQxxSOGiSyZuEEDIoTMJabk9poJu0cPMW4x5rzHBuh9HNY-BRN83WWLFNpmk62Sr33q8t_g_43tsmUwFbTOZb7Jvg918vl4A03KFl1MsIuP6M6ZOsLT5Q7RavqxnHzl85_P2WQ8zy1jMuWyxIoBXePCVIRaAA5AnCwrgSupFMiiBFcYK0ruDKjCccLM2hRUOQ7WCjZEr-fdfWj_DhCT3raH0PQvNeW8EJJiXvYUOVM2tDEGcHof_M6EThOsT6r0SZU-qdIXVX3n5dzxAHDlFZEFFYIdAQceZTY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Chong Xiao</creator><creator>Song, Yang</creator><creator>Tay, Wee Peng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9236-4538</orcidid><orcidid>https://orcid.org/0000-0002-1543-195X</orcidid><orcidid>https://orcid.org/0000-0002-0699-7329</orcidid></search><sort><creationdate>2021</creationdate><title>Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems</title><author>Wang, Chong Xiao ; Song, Yang ; Tay, Wee Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-68093e2b07ad12cee4ee1f68d50d699e678ef7ac584fae97f413aba729f4ecc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cramér-Rao lower bound</topic><topic>Data privacy</topic><topic>Estimation</topic><topic>Inference privacy</topic><topic>linear estimation</topic><topic>Lower bounds</topic><topic>multi-agent network</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Noise measurement</topic><topic>Parameter estimation</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Privacy</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chong Xiao</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Tay, Wee Peng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Chong Xiao</au><au>Song, Yang</au><au>Tay, Wee Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2021</date><risdate>2021</risdate><volume>16</volume><spage>671</spage><epage>684</epage><pages>671-684</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We investigate the utility-privacy tradeoff in terms of the Cramér-Rao lower bounds for estimating the public and private parameters. We study the class of privacy mechanisms given by linear compression and noise perturbation, and derive necessary and sufficient conditions for achieving arbitrarily strong utility-privacy tradeoff in a multi-agent system for both the cases where prior information is available and unavailable, respectively. We also provide a method to find the maximum estimation privacy achievable without compromising the utility and propose an alternating algorithm to optimize the utility-privacy tradeoff in the case where arbitrarily strong utility-privacy tradeoff is not achievable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2020.3016835</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9236-4538</orcidid><orcidid>https://orcid.org/0000-0002-1543-195X</orcidid><orcidid>https://orcid.org/0000-0002-0699-7329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2021, Vol.16, p.671-684
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_9167255
source IEEE Electronic Library (IEL)
subjects Algorithms
Cramér-Rao lower bound
Data privacy
Estimation
Inference privacy
linear estimation
Lower bounds
multi-agent network
Multi-agent systems
Multiagent systems
Noise measurement
Parameter estimation
Perturbation
Perturbation methods
Privacy
Tradeoffs
title Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arbitrarily%20Strong%20Utility-Privacy%20Tradeoff%20in%20Multi-Agent%20Systems&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Wang,%20Chong%20Xiao&rft.date=2021&rft.volume=16&rft.spage=671&rft.epage=684&rft.pages=671-684&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2020.3016835&rft_dat=%3Cproquest_RIE%3E2447562048%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447562048&rft_id=info:pmid/&rft_ieee_id=9167255&rfr_iscdi=true