Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems
Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its loca...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2021, Vol.16, p.671-684 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We investigate the utility-privacy tradeoff in terms of the Cramér-Rao lower bounds for estimating the public and private parameters. We study the class of privacy mechanisms given by linear compression and noise perturbation, and derive necessary and sufficient conditions for achieving arbitrarily strong utility-privacy tradeoff in a multi-agent system for both the cases where prior information is available and unavailable, respectively. We also provide a method to find the maximum estimation privacy achievable without compromising the utility and propose an alternating algorithm to optimize the utility-privacy tradeoff in the case where arbitrarily strong utility-privacy tradeoff is not achievable. |
---|---|
ISSN: | 1556-6013 1556-6021 |
DOI: | 10.1109/TIFS.2020.3016835 |