Convolution Idempotents With a Given Zero-Set
We investigate the structure of N-length discrete signals h satisfying h * h = h that vanish on a given set of indices. We motivate this problem from examples in sampling, Fuglede's conjecture, and orthogonal interpolation of bandlimited signals. When N = p M is a prime power, we characterize a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2020, Vol.68, p.4773-4781 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the structure of N-length discrete signals h satisfying h * h = h that vanish on a given set of indices. We motivate this problem from examples in sampling, Fuglede's conjecture, and orthogonal interpolation of bandlimited signals. When N = p M is a prime power, we characterize all such h with a prescribed zero set in terms of base-p expansions of nonzero indices in F -1 h. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2020.3016137 |