Convolution Idempotents With a Given Zero-Set

We investigate the structure of N-length discrete signals h satisfying h * h = h that vanish on a given set of indices. We motivate this problem from examples in sampling, Fuglede's conjecture, and orthogonal interpolation of bandlimited signals. When N = p M is a prime power, we characterize a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2020, Vol.68, p.4773-4781
Hauptverfasser: Siripuram, Aditya, Osgood, Brad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the structure of N-length discrete signals h satisfying h * h = h that vanish on a given set of indices. We motivate this problem from examples in sampling, Fuglede's conjecture, and orthogonal interpolation of bandlimited signals. When N = p M is a prime power, we characterize all such h with a prescribed zero set in terms of base-p expansions of nonzero indices in F -1 h.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2020.3016137