Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data

User mobility prediction is widely considered by the research community. Many studies have explored various algorithms to predict where a user is likely to visit based on their contexts and trajectories. Most of existing studies focus on specific targets of predictions. While successful cases are of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on mobile computing 2022-03, Vol.21 (3), p.1096-1109
Hauptverfasser: Li, Huoran, Lin, Fuqi, Lu, Xuan, Xu, Chenren, Huang, Gang, Zhang, Jun, Mei, Qiaozhu, Liu, Xuanzhe
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1109
container_issue 3
container_start_page 1096
container_title IEEE transactions on mobile computing
container_volume 21
creator Li, Huoran
Lin, Fuqi
Lu, Xuan
Xu, Chenren
Huang, Gang
Zhang, Jun
Mei, Qiaozhu
Liu, Xuanzhe
description User mobility prediction is widely considered by the research community. Many studies have explored various algorithms to predict where a user is likely to visit based on their contexts and trajectories. Most of existing studies focus on specific targets of predictions. While successful cases are often reported, few discussions have been done on what happens if the prediction targets vary: whether coarser locations are easier to be predicted, and whether predicting the immediate next location on the trajectory is easier than predicting the destination. On the other hand, while spatiotemporal tags and content information are commonly used in current prediction tasks, few have utilized the finer grained, on-device user behavioral data, which are supposed to be more informative and indicative of user intentions. In this paper, we conduct a systematic study on the mobility prediction using a large-scale real-world dataset that contains plentiful contextual information. Based on a series of learning models, including a Markov model, two recurrent neural network models, and a multi-modal learning method, we perform extensive experiments to comprehensively investigate the predictability of different types of granularities of targets and the effectiveness of different types of signals. The results provide insightful knowledge on what can be predicted along with how, which sheds light on the real-world mobility prediction from a relatively general perspective.
doi_str_mv 10.1109/TMC.2020.3015921
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9165195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9165195</ieee_id><sourcerecordid>2625366364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-418bfe28c8782bfbfe7109c745423d1a8a4add52780ea77d245d8c0bd55e10973</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-NE16HJ2bwsYEpx5DmqSY0bUzycT-92ZMPH3v4Xk_eB8AbjGaYIzKh82qmhBE0IQizEqCz8AIMyYyVBTo_JhpkWFC6SW4CmGLEBZlyUfg_XUI0e5UdBpOO9UOwQXYN3DuOpstvErHwFVfu9bFAb54a5yOru_gh4ufcN1lM_vttIVV30X7Ew-qhTMV1TW4aFQb7M3fHYO3-eOmesqW68VzNV1mmlIasxyLurFEaMEFqZuUedqiec5yQg1WQuXKGEa4QFZxbkjOjNCoNozZBHI6Bvenv3vffx1siHLbH3zaESQpSNpc0CJPFDpR2vcheNvIvXc75QeJkTzak8mePNqTf_ZS5e5Ucdbaf7zEBcMlo7_GbGqH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2625366364</pqid></control><display><type>magazinearticle</type><title>Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Huoran ; Lin, Fuqi ; Lu, Xuan ; Xu, Chenren ; Huang, Gang ; Zhang, Jun ; Mei, Qiaozhu ; Liu, Xuanzhe</creator><creatorcontrib>Li, Huoran ; Lin, Fuqi ; Lu, Xuan ; Xu, Chenren ; Huang, Gang ; Zhang, Jun ; Mei, Qiaozhu ; Liu, Xuanzhe</creatorcontrib><description>User mobility prediction is widely considered by the research community. Many studies have explored various algorithms to predict where a user is likely to visit based on their contexts and trajectories. Most of existing studies focus on specific targets of predictions. While successful cases are often reported, few discussions have been done on what happens if the prediction targets vary: whether coarser locations are easier to be predicted, and whether predicting the immediate next location on the trajectory is easier than predicting the destination. On the other hand, while spatiotemporal tags and content information are commonly used in current prediction tasks, few have utilized the finer grained, on-device user behavioral data, which are supposed to be more informative and indicative of user intentions. In this paper, we conduct a systematic study on the mobility prediction using a large-scale real-world dataset that contains plentiful contextual information. Based on a series of learning models, including a Markov model, two recurrent neural network models, and a multi-modal learning method, we perform extensive experiments to comprehensively investigate the predictability of different types of granularities of targets and the effectiveness of different types of signals. The results provide insightful knowledge on what can be predicted along with how, which sheds light on the real-world mobility prediction from a relatively general perspective.</description><identifier>ISSN: 1536-1233</identifier><identifier>EISSN: 1558-0660</identifier><identifier>DOI: 10.1109/TMC.2020.3015921</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Algorithms ; Learning ; Markov chains ; Mobile computing ; Mobility prediction ; multi-modal learning ; Predictions ; Predictive models ; Recurrent neural networks ; Semantics ; Smart phones ; Systematics ; Task analysis ; Trajectory ; user behavior analysis</subject><ispartof>IEEE transactions on mobile computing, 2022-03, Vol.21 (3), p.1096-1109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-418bfe28c8782bfbfe7109c745423d1a8a4add52780ea77d245d8c0bd55e10973</citedby><cites>FETCH-LOGICAL-c333t-418bfe28c8782bfbfe7109c745423d1a8a4add52780ea77d245d8c0bd55e10973</cites><orcidid>0000-0001-9171-2596 ; 0000-0002-7908-8484 ; 0000-0002-4686-3181 ; 0000-0002-8874-9846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9165195$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9165195$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Huoran</creatorcontrib><creatorcontrib>Lin, Fuqi</creatorcontrib><creatorcontrib>Lu, Xuan</creatorcontrib><creatorcontrib>Xu, Chenren</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Mei, Qiaozhu</creatorcontrib><creatorcontrib>Liu, Xuanzhe</creatorcontrib><title>Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>User mobility prediction is widely considered by the research community. Many studies have explored various algorithms to predict where a user is likely to visit based on their contexts and trajectories. Most of existing studies focus on specific targets of predictions. While successful cases are often reported, few discussions have been done on what happens if the prediction targets vary: whether coarser locations are easier to be predicted, and whether predicting the immediate next location on the trajectory is easier than predicting the destination. On the other hand, while spatiotemporal tags and content information are commonly used in current prediction tasks, few have utilized the finer grained, on-device user behavioral data, which are supposed to be more informative and indicative of user intentions. In this paper, we conduct a systematic study on the mobility prediction using a large-scale real-world dataset that contains plentiful contextual information. Based on a series of learning models, including a Markov model, two recurrent neural network models, and a multi-modal learning method, we perform extensive experiments to comprehensively investigate the predictability of different types of granularities of targets and the effectiveness of different types of signals. The results provide insightful knowledge on what can be predicted along with how, which sheds light on the real-world mobility prediction from a relatively general perspective.</description><subject>Algorithms</subject><subject>Learning</subject><subject>Markov chains</subject><subject>Mobile computing</subject><subject>Mobility prediction</subject><subject>multi-modal learning</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><subject>Semantics</subject><subject>Smart phones</subject><subject>Systematics</subject><subject>Task analysis</subject><subject>Trajectory</subject><subject>user behavior analysis</subject><issn>1536-1233</issn><issn>1558-0660</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2022</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-NE16HJ2bwsYEpx5DmqSY0bUzycT-92ZMPH3v4Xk_eB8AbjGaYIzKh82qmhBE0IQizEqCz8AIMyYyVBTo_JhpkWFC6SW4CmGLEBZlyUfg_XUI0e5UdBpOO9UOwQXYN3DuOpstvErHwFVfu9bFAb54a5yOru_gh4ufcN1lM_vttIVV30X7Ew-qhTMV1TW4aFQb7M3fHYO3-eOmesqW68VzNV1mmlIasxyLurFEaMEFqZuUedqiec5yQg1WQuXKGEa4QFZxbkjOjNCoNozZBHI6Bvenv3vffx1siHLbH3zaESQpSNpc0CJPFDpR2vcheNvIvXc75QeJkTzak8mePNqTf_ZS5e5Ucdbaf7zEBcMlo7_GbGqH</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Li, Huoran</creator><creator>Lin, Fuqi</creator><creator>Lu, Xuan</creator><creator>Xu, Chenren</creator><creator>Huang, Gang</creator><creator>Zhang, Jun</creator><creator>Mei, Qiaozhu</creator><creator>Liu, Xuanzhe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9171-2596</orcidid><orcidid>https://orcid.org/0000-0002-7908-8484</orcidid><orcidid>https://orcid.org/0000-0002-4686-3181</orcidid><orcidid>https://orcid.org/0000-0002-8874-9846</orcidid></search><sort><creationdate>20220301</creationdate><title>Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data</title><author>Li, Huoran ; Lin, Fuqi ; Lu, Xuan ; Xu, Chenren ; Huang, Gang ; Zhang, Jun ; Mei, Qiaozhu ; Liu, Xuanzhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-418bfe28c8782bfbfe7109c745423d1a8a4add52780ea77d245d8c0bd55e10973</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Learning</topic><topic>Markov chains</topic><topic>Mobile computing</topic><topic>Mobility prediction</topic><topic>multi-modal learning</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><topic>Semantics</topic><topic>Smart phones</topic><topic>Systematics</topic><topic>Task analysis</topic><topic>Trajectory</topic><topic>user behavior analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huoran</creatorcontrib><creatorcontrib>Lin, Fuqi</creatorcontrib><creatorcontrib>Lu, Xuan</creatorcontrib><creatorcontrib>Xu, Chenren</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Mei, Qiaozhu</creatorcontrib><creatorcontrib>Liu, Xuanzhe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Huoran</au><au>Lin, Fuqi</au><au>Lu, Xuan</au><au>Xu, Chenren</au><au>Huang, Gang</au><au>Zhang, Jun</au><au>Mei, Qiaozhu</au><au>Liu, Xuanzhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>21</volume><issue>3</issue><spage>1096</spage><epage>1109</epage><pages>1096-1109</pages><issn>1536-1233</issn><eissn>1558-0660</eissn><coden>ITMCCJ</coden><abstract>User mobility prediction is widely considered by the research community. Many studies have explored various algorithms to predict where a user is likely to visit based on their contexts and trajectories. Most of existing studies focus on specific targets of predictions. While successful cases are often reported, few discussions have been done on what happens if the prediction targets vary: whether coarser locations are easier to be predicted, and whether predicting the immediate next location on the trajectory is easier than predicting the destination. On the other hand, while spatiotemporal tags and content information are commonly used in current prediction tasks, few have utilized the finer grained, on-device user behavioral data, which are supposed to be more informative and indicative of user intentions. In this paper, we conduct a systematic study on the mobility prediction using a large-scale real-world dataset that contains plentiful contextual information. Based on a series of learning models, including a Markov model, two recurrent neural network models, and a multi-modal learning method, we perform extensive experiments to comprehensively investigate the predictability of different types of granularities of targets and the effectiveness of different types of signals. The results provide insightful knowledge on what can be predicted along with how, which sheds light on the real-world mobility prediction from a relatively general perspective.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TMC.2020.3015921</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9171-2596</orcidid><orcidid>https://orcid.org/0000-0002-7908-8484</orcidid><orcidid>https://orcid.org/0000-0002-4686-3181</orcidid><orcidid>https://orcid.org/0000-0002-8874-9846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1233
ispartof IEEE transactions on mobile computing, 2022-03, Vol.21 (3), p.1096-1109
issn 1536-1233
1558-0660
language eng
recordid cdi_ieee_primary_9165195
source IEEE Electronic Library (IEL)
subjects Algorithms
Learning
Markov chains
Mobile computing
Mobility prediction
multi-modal learning
Predictions
Predictive models
Recurrent neural networks
Semantics
Smart phones
Systematics
Task analysis
Trajectory
user behavior analysis
title Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Analysis%20of%20Fine-Grained%20Mobility%20Prediction%20With%20On-Device%20Contextual%20Data&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Li,%20Huoran&rft.date=2022-03-01&rft.volume=21&rft.issue=3&rft.spage=1096&rft.epage=1109&rft.pages=1096-1109&rft.issn=1536-1233&rft.eissn=1558-0660&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2020.3015921&rft_dat=%3Cproquest_RIE%3E2625366364%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625366364&rft_id=info:pmid/&rft_ieee_id=9165195&rfr_iscdi=true