Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data
User mobility prediction is widely considered by the research community. Many studies have explored various algorithms to predict where a user is likely to visit based on their contexts and trajectories. Most of existing studies focus on specific targets of predictions. While successful cases are of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on mobile computing 2022-03, Vol.21 (3), p.1096-1109 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1109 |
---|---|
container_issue | 3 |
container_start_page | 1096 |
container_title | IEEE transactions on mobile computing |
container_volume | 21 |
creator | Li, Huoran Lin, Fuqi Lu, Xuan Xu, Chenren Huang, Gang Zhang, Jun Mei, Qiaozhu Liu, Xuanzhe |
description | User mobility prediction is widely considered by the research community. Many studies have explored various algorithms to predict where a user is likely to visit based on their contexts and trajectories. Most of existing studies focus on specific targets of predictions. While successful cases are often reported, few discussions have been done on what happens if the prediction targets vary: whether coarser locations are easier to be predicted, and whether predicting the immediate next location on the trajectory is easier than predicting the destination. On the other hand, while spatiotemporal tags and content information are commonly used in current prediction tasks, few have utilized the finer grained, on-device user behavioral data, which are supposed to be more informative and indicative of user intentions. In this paper, we conduct a systematic study on the mobility prediction using a large-scale real-world dataset that contains plentiful contextual information. Based on a series of learning models, including a Markov model, two recurrent neural network models, and a multi-modal learning method, we perform extensive experiments to comprehensively investigate the predictability of different types of granularities of targets and the effectiveness of different types of signals. The results provide insightful knowledge on what can be predicted along with how, which sheds light on the real-world mobility prediction from a relatively general perspective. |
doi_str_mv | 10.1109/TMC.2020.3015921 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9165195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9165195</ieee_id><sourcerecordid>2625366364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-418bfe28c8782bfbfe7109c745423d1a8a4add52780ea77d245d8c0bd55e10973</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-NE16HJ2bwsYEpx5DmqSY0bUzycT-92ZMPH3v4Xk_eB8AbjGaYIzKh82qmhBE0IQizEqCz8AIMyYyVBTo_JhpkWFC6SW4CmGLEBZlyUfg_XUI0e5UdBpOO9UOwQXYN3DuOpstvErHwFVfu9bFAb54a5yOru_gh4ufcN1lM_vttIVV30X7Ew-qhTMV1TW4aFQb7M3fHYO3-eOmesqW68VzNV1mmlIasxyLurFEaMEFqZuUedqiec5yQg1WQuXKGEa4QFZxbkjOjNCoNozZBHI6Bvenv3vffx1siHLbH3zaESQpSNpc0CJPFDpR2vcheNvIvXc75QeJkTzak8mePNqTf_ZS5e5Ucdbaf7zEBcMlo7_GbGqH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2625366364</pqid></control><display><type>magazinearticle</type><title>Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Huoran ; Lin, Fuqi ; Lu, Xuan ; Xu, Chenren ; Huang, Gang ; Zhang, Jun ; Mei, Qiaozhu ; Liu, Xuanzhe</creator><creatorcontrib>Li, Huoran ; Lin, Fuqi ; Lu, Xuan ; Xu, Chenren ; Huang, Gang ; Zhang, Jun ; Mei, Qiaozhu ; Liu, Xuanzhe</creatorcontrib><description>User mobility prediction is widely considered by the research community. Many studies have explored various algorithms to predict where a user is likely to visit based on their contexts and trajectories. Most of existing studies focus on specific targets of predictions. While successful cases are often reported, few discussions have been done on what happens if the prediction targets vary: whether coarser locations are easier to be predicted, and whether predicting the immediate next location on the trajectory is easier than predicting the destination. On the other hand, while spatiotemporal tags and content information are commonly used in current prediction tasks, few have utilized the finer grained, on-device user behavioral data, which are supposed to be more informative and indicative of user intentions. In this paper, we conduct a systematic study on the mobility prediction using a large-scale real-world dataset that contains plentiful contextual information. Based on a series of learning models, including a Markov model, two recurrent neural network models, and a multi-modal learning method, we perform extensive experiments to comprehensively investigate the predictability of different types of granularities of targets and the effectiveness of different types of signals. The results provide insightful knowledge on what can be predicted along with how, which sheds light on the real-world mobility prediction from a relatively general perspective.</description><identifier>ISSN: 1536-1233</identifier><identifier>EISSN: 1558-0660</identifier><identifier>DOI: 10.1109/TMC.2020.3015921</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Algorithms ; Learning ; Markov chains ; Mobile computing ; Mobility prediction ; multi-modal learning ; Predictions ; Predictive models ; Recurrent neural networks ; Semantics ; Smart phones ; Systematics ; Task analysis ; Trajectory ; user behavior analysis</subject><ispartof>IEEE transactions on mobile computing, 2022-03, Vol.21 (3), p.1096-1109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-418bfe28c8782bfbfe7109c745423d1a8a4add52780ea77d245d8c0bd55e10973</citedby><cites>FETCH-LOGICAL-c333t-418bfe28c8782bfbfe7109c745423d1a8a4add52780ea77d245d8c0bd55e10973</cites><orcidid>0000-0001-9171-2596 ; 0000-0002-7908-8484 ; 0000-0002-4686-3181 ; 0000-0002-8874-9846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9165195$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9165195$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Huoran</creatorcontrib><creatorcontrib>Lin, Fuqi</creatorcontrib><creatorcontrib>Lu, Xuan</creatorcontrib><creatorcontrib>Xu, Chenren</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Mei, Qiaozhu</creatorcontrib><creatorcontrib>Liu, Xuanzhe</creatorcontrib><title>Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>User mobility prediction is widely considered by the research community. Many studies have explored various algorithms to predict where a user is likely to visit based on their contexts and trajectories. Most of existing studies focus on specific targets of predictions. While successful cases are often reported, few discussions have been done on what happens if the prediction targets vary: whether coarser locations are easier to be predicted, and whether predicting the immediate next location on the trajectory is easier than predicting the destination. On the other hand, while spatiotemporal tags and content information are commonly used in current prediction tasks, few have utilized the finer grained, on-device user behavioral data, which are supposed to be more informative and indicative of user intentions. In this paper, we conduct a systematic study on the mobility prediction using a large-scale real-world dataset that contains plentiful contextual information. Based on a series of learning models, including a Markov model, two recurrent neural network models, and a multi-modal learning method, we perform extensive experiments to comprehensively investigate the predictability of different types of granularities of targets and the effectiveness of different types of signals. The results provide insightful knowledge on what can be predicted along with how, which sheds light on the real-world mobility prediction from a relatively general perspective.</description><subject>Algorithms</subject><subject>Learning</subject><subject>Markov chains</subject><subject>Mobile computing</subject><subject>Mobility prediction</subject><subject>multi-modal learning</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><subject>Semantics</subject><subject>Smart phones</subject><subject>Systematics</subject><subject>Task analysis</subject><subject>Trajectory</subject><subject>user behavior analysis</subject><issn>1536-1233</issn><issn>1558-0660</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2022</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-NE16HJ2bwsYEpx5DmqSY0bUzycT-92ZMPH3v4Xk_eB8AbjGaYIzKh82qmhBE0IQizEqCz8AIMyYyVBTo_JhpkWFC6SW4CmGLEBZlyUfg_XUI0e5UdBpOO9UOwQXYN3DuOpstvErHwFVfu9bFAb54a5yOru_gh4ufcN1lM_vttIVV30X7Ew-qhTMV1TW4aFQb7M3fHYO3-eOmesqW68VzNV1mmlIasxyLurFEaMEFqZuUedqiec5yQg1WQuXKGEa4QFZxbkjOjNCoNozZBHI6Bvenv3vffx1siHLbH3zaESQpSNpc0CJPFDpR2vcheNvIvXc75QeJkTzak8mePNqTf_ZS5e5Ucdbaf7zEBcMlo7_GbGqH</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Li, Huoran</creator><creator>Lin, Fuqi</creator><creator>Lu, Xuan</creator><creator>Xu, Chenren</creator><creator>Huang, Gang</creator><creator>Zhang, Jun</creator><creator>Mei, Qiaozhu</creator><creator>Liu, Xuanzhe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9171-2596</orcidid><orcidid>https://orcid.org/0000-0002-7908-8484</orcidid><orcidid>https://orcid.org/0000-0002-4686-3181</orcidid><orcidid>https://orcid.org/0000-0002-8874-9846</orcidid></search><sort><creationdate>20220301</creationdate><title>Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data</title><author>Li, Huoran ; Lin, Fuqi ; Lu, Xuan ; Xu, Chenren ; Huang, Gang ; Zhang, Jun ; Mei, Qiaozhu ; Liu, Xuanzhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-418bfe28c8782bfbfe7109c745423d1a8a4add52780ea77d245d8c0bd55e10973</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Learning</topic><topic>Markov chains</topic><topic>Mobile computing</topic><topic>Mobility prediction</topic><topic>multi-modal learning</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><topic>Semantics</topic><topic>Smart phones</topic><topic>Systematics</topic><topic>Task analysis</topic><topic>Trajectory</topic><topic>user behavior analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huoran</creatorcontrib><creatorcontrib>Lin, Fuqi</creatorcontrib><creatorcontrib>Lu, Xuan</creatorcontrib><creatorcontrib>Xu, Chenren</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Mei, Qiaozhu</creatorcontrib><creatorcontrib>Liu, Xuanzhe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Huoran</au><au>Lin, Fuqi</au><au>Lu, Xuan</au><au>Xu, Chenren</au><au>Huang, Gang</au><au>Zhang, Jun</au><au>Mei, Qiaozhu</au><au>Liu, Xuanzhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>21</volume><issue>3</issue><spage>1096</spage><epage>1109</epage><pages>1096-1109</pages><issn>1536-1233</issn><eissn>1558-0660</eissn><coden>ITMCCJ</coden><abstract>User mobility prediction is widely considered by the research community. Many studies have explored various algorithms to predict where a user is likely to visit based on their contexts and trajectories. Most of existing studies focus on specific targets of predictions. While successful cases are often reported, few discussions have been done on what happens if the prediction targets vary: whether coarser locations are easier to be predicted, and whether predicting the immediate next location on the trajectory is easier than predicting the destination. On the other hand, while spatiotemporal tags and content information are commonly used in current prediction tasks, few have utilized the finer grained, on-device user behavioral data, which are supposed to be more informative and indicative of user intentions. In this paper, we conduct a systematic study on the mobility prediction using a large-scale real-world dataset that contains plentiful contextual information. Based on a series of learning models, including a Markov model, two recurrent neural network models, and a multi-modal learning method, we perform extensive experiments to comprehensively investigate the predictability of different types of granularities of targets and the effectiveness of different types of signals. The results provide insightful knowledge on what can be predicted along with how, which sheds light on the real-world mobility prediction from a relatively general perspective.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TMC.2020.3015921</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9171-2596</orcidid><orcidid>https://orcid.org/0000-0002-7908-8484</orcidid><orcidid>https://orcid.org/0000-0002-4686-3181</orcidid><orcidid>https://orcid.org/0000-0002-8874-9846</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1233 |
ispartof | IEEE transactions on mobile computing, 2022-03, Vol.21 (3), p.1096-1109 |
issn | 1536-1233 1558-0660 |
language | eng |
recordid | cdi_ieee_primary_9165195 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Learning Markov chains Mobile computing Mobility prediction multi-modal learning Predictions Predictive models Recurrent neural networks Semantics Smart phones Systematics Task analysis Trajectory user behavior analysis |
title | Systematic Analysis of Fine-Grained Mobility Prediction With On-Device Contextual Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Analysis%20of%20Fine-Grained%20Mobility%20Prediction%20With%20On-Device%20Contextual%20Data&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Li,%20Huoran&rft.date=2022-03-01&rft.volume=21&rft.issue=3&rft.spage=1096&rft.epage=1109&rft.pages=1096-1109&rft.issn=1536-1233&rft.eissn=1558-0660&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2020.3015921&rft_dat=%3Cproquest_RIE%3E2625366364%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625366364&rft_id=info:pmid/&rft_ieee_id=9165195&rfr_iscdi=true |