A Light-Weight Neural Network for Wafer Map Classification Based on Data Augmentation

In the semiconductor industry, the testing section has always played an important role. The testing section often requires engineers to judge the defect, which wastes a lot of time and cost. The accurate classification can provide useful information for engineers through neural networks. In this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on semiconductor manufacturing 2020-11, Vol.33 (4), p.663-672
Hauptverfasser: Tsai, Tsung-Han, Lee, Yu-Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the semiconductor industry, the testing section has always played an important role. The testing section often requires engineers to judge the defect, which wastes a lot of time and cost. The accurate classification can provide useful information for engineers through neural networks. In this paper, we present a method for wafer map data augmentation and defect classification. Data augmentation is based on CNN encoder-decoder and the classification is based on depthwise separable convolutions. There are two datasets used, one is open dataset WM-811K and the other is built with a Taiwan company. We train two models with mobilenetV1 and V2 for the different datasets. The light-weight deep convolution can reduce model parameters and calculations, which is very efficient for the testing house with large production volumes. On two different data sets, our proposed method can reduce the number of parameters by 30% and 95%, and reduce the amount of calculation by 75% and 25%, respectively. The test accuracy of the first dataset is 93.95%. The second dataset test accuracy is 87.04%. After the data augmentation, accuracy is increased to 97.01% and 95.09%, respectively.
ISSN:0894-6507
1558-2345
DOI:10.1109/TSM.2020.3013004